| - | _ | | | Internal Asse | ssmer | t Test - II | | ACCREDITED | WITH A + GRA | DE BY MAAC | |-------|-------------|---------------|-------------|----------------|--------|---------------|---------------------------|------------|--------------|------------| | Sub: | Engineering | Mathematic | s - IV | | | Sub
Code: | 15MAT41 | Branch: | ECF | E, IS | | Date: | 16.04.2018 | Duration: | 90 min | Max Marks: | | Sem /
Sec: | IV/ EC A & C,
IS A & B | | 0 | BE | | | Answer Ques | stion 1 or Qu | estion 2 ar | id any SIX que | stions | from Que | estion 3 to 10. | MARKS | СО | RBT | Discuss the transformation $w = z + \frac{1}{z}, z \neq 0$. [08] CO₃ L3 Apply Milne's method to compute y(0.8) given $\frac{d^2y}{dx^2} = 1 - 2y\frac{dy}{dx}$ and the following table 2. of initial values: | X | 0 | 0.2 | 0.4 | 0.6 | |----|---|--------|--------|--------| | У | 0 | 0.02 | 0.0795 | 0.1762 | | y' | 0 | 0.1996 | 0.3937 | 0.5689 | [08] COI L3 Using Taylor series method, compute y(0.2) and y(0.4) given $\frac{dy}{dx} = x^2y + 1$, with 3. y(0) = 1. Consider up to fourth degree terms. [07] CO₁ Solve the differential equation $\frac{dy}{dx} = \log(x + y)$ under the initial condition y(0) = 2,b,y using modified Euler's method. Find y(0.4) by taking h = 0.2. [07] COL | USN | | | | | | | | CAME ONSTITUTE OF ACCREDITED V |) CN | | | |-------|------------------------------|--------------|--------------|-----------------|---------|---------------|----------------------|---------------------------------|------|------|--| | | | | | Internal Assess | ment | Test – II | | | | | | | Sub: | Engineering Mathematics - IV | | | | | Sub
Code: | 15MAT41 | Branch: | ECH | E,IS | | | Date: | 16.04.2018 | Duration: | 90 min | Max Marks: | 50 | Sem /
Sec: | IV/ EC A &
IS A & | EC A & C,
IS A & B IV/IS-A&B | | OBE | | | F | Answer Quest | ion 1 or Que | estion 2 and | d any SIX ques | tions f | rom Quest | ion 3 to 10. | MARKS | СО | RBT | | Discuss the transformation $w = z + \frac{1}{z}, z \neq 0$. [08] CO3 Apply Milne's method to compute y(0.8) given $\frac{d^2y}{dx^2} = 1 - 2y\frac{dy}{dx}$ and the following table of initial values: | | x | 0 | 0.2 | 0.4 | 0.6 | |---|-------|---|--------|--------|--------| | H | ν | 0 | 0.02 | 0.0795 | 0.1762 | | | ν'''' | 0 | 0.1996 | 0.3937 | 0.5689 | CO1 L3 [08] Using Taylor series method, compute y(0.2) and y(0.4) given $\frac{dy}{dx} = x^2y + 1$, with y(0) = 1. Consider up to fourth degree terms. [07] CO1 L3 - Solve the differential equation $\frac{dy}{dx} = \log(x + y)$ under the initial condition y(0) = 2, by using modified Euler's method. Find y(0.4) by taking h = 0.2. COL Approximate the solution of the initial value problem $\frac{dy}{dx} = \frac{y-x}{y+x}$, at x = 0.2 by Runge-CO₁ [07] Kutta 4th order method, given y(0) = 1. Take h = 0.2Derive mean and variance of the Poisson distribution. CO4 A random variable has the following density function: $f(x) = \begin{cases} kx^2 & -3 \le x \le 3\\ 0 & elsewhere \end{cases}$ [07] CO4 L3 Evaluate k and find the mean and variance of the distribution. Also find $P(X \le 2)$ The probability that a man aged 60 will live to be 70 is 0.65. What is the probability that CO₄ L3 [07] out of 10 men now aged 60, (i) exactly 9 will live to be 70 (ii) at most 9 will live to be 70 (iii)at least 7 will live to be 70? In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean 9. [07] CO4 L3 and S.D, given that φ (0.5)= 0.19 and φ (1.4)=0.42 where φ (z) is the area under the standard normal curve from 0 to z. The sale per day in a shop is exponentially distributed with average sale amounting to CO4 L3 10. [07] Rs. 1000 and net profit 8%. Find the probability that the net profit exceeds Rs. 300 on a day. - Approximate the solution of the initial value problem $\frac{dy}{dx} = \frac{y-x}{y+x}$, at x = 0.2 by Runge-Kutta 4th order method, given y(0) = 1. Take h = 0.2[07] CO₁ Derive mean and variance of the Poisson distribution. [07] CO₄ L3 A random variable has the following density function: $f(x) = \begin{cases} kx^2 & -3 \le x \le 3\\ 0 & elsewhere \end{cases}$ L3 [07] CO₄ Evaluate k and find the mean and variance of the distribution. Also find $P(X \le 2)$. The probability that a man aged 60 will live to be 70 is 0.65. What is the probability that 8. out of 10 men now aged 60, (i) exactly 9 will live to be 70 (ii) at most 9 will live to be 70 [07] CO₄ L3 (iii)at least 7 will live to be 70? In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean 9. [07] CO4 L3 and S.D, given that $\varphi(0.5) = 0.19$ and $\varphi(1.4)=0.42$ where $\varphi(z)$ is the area under the standard normal curve from 0 to z. The sale per day in a shop is exponentially distributed with average sale amounting to 10. L3 CO4 [07] Rs.1000 and net profit 8%. Find the probability that the net profit exceeds Rs. 300 on a day. Solution - IAT-2 (April 2018) Engineering Mathematics - 4 1. The transformation W= 3+ \frac{1}{3}, 3 \pm 0 Conformality: f(3) = 3 + \frac{1}{3} $f'(3) = 1 - \frac{1}{3^2} = \frac{3^2 - 1}{3^2}$ = (3+1)(3-1) $f'(3) = 0 \Rightarrow 3 = \pm 1$. . The mapping is conformal at all points in the domain of defr. except 3=±1 Writing W= 4+iv and 3= 2 (cos 0+ i sin 0), - (1) U+iv = r (cos 0 + isino) + + (cos 0 - ismo) = (2+1/2) cos 0 + i (2-1/2) sui 0 \Rightarrow $u = (x + \frac{1}{x})\cos\theta$ and $v = (x - \frac{1}{x})\sin\theta - I$ Eliminating 0 from I, $\frac{u^2}{\left(x+\frac{1}{x}\right)^2} + \frac{v^2}{\left(x-\frac{1}{x}\right)^2} = 1$ When R = a constant (#1), the above egg. represents an ellipse with focks — (1) $\left(\pm\sqrt{(x+\frac{1}{n})^{2}-(n-\frac{1}{n})^{2}},0\right)=\left(\pm2,0\right)$ which is ind. of r. -. The image of a family of concentre cricles r=c is a family of confocal ellipses 3. $$\frac{dy}{dx} = x^2y - 1$$, $y(0) = 1$ $2 x_0 = 0$, $y_0 = 1$ $y' = x^2y - 1$ $y'(0) = -1$ $y''' = x^2y'' + 2xy$ $y'''(0) = 0$ (1) $y''' = x^2y'' + 2xy' + 2y$ $= x^2y''' + 4xy' + 2y$ $y''''(0) = 2$ (1) $y^{10} = x^2y''' + 2xy'' + 4xy'' + 4y' + 2y'$ $= x^2y''' + 6xy'' + 6y'$ $y^{10}(0) = -6$ (1) $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2y''(x_0) + \cdots$ $= 1 + 2y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y''(0) + \frac{x^4}{4!}y''(0) - 1$ $= 1 - x + \frac{x^3}{3} - \frac{x^4}{4}$ (1) $y(0, 2) = 0.80227$ (1) $y(0, 4) = 0.61493$ (1) $y(0, 4) = 0.61493$ (1) $y(0, 4) = 0.6931$, $y(0) = 2$ $y(0, 4) = 0.6931$, $y(0) = 2$ $y(0) = y_0 + k f(x_0, y_0)$ 9.5 Approximate the solution of the initial value Problem dy = y-x at x=0.2 by R-k 4th order method, given y(0)=1. Take h=0.2 here fix, y) = y-x, x0=0, y0=1, h=0.2 $k_1 = h \text{ tireo, } f_0) = (0.2) f(0,1) = (0.2) \left(\frac{1-0}{1+0}\right) = 0.2$ Ko = h & (swth, yother) = 6.2) 5 (0.1, 1.1) $= (0.2) \left(\frac{1.1 - 0.1}{1.1 + 0.1} \right)$ K2 = 0.1667 ___(1) K3 = h & (x0+ h, y0 + K2) = (0.2) \$ (0.1, 1.08335) = (0-2) [1.08335-0.] 1.08335+0.] B = 0.1662 (1) Ky = h & (xoth, yo+kg) -(0.2) \$ (0.2, 1.1662) = (0.2) [1.1662-0.2] 1/2 0-1414 (治) · 3(0.2) = yot 1 (KIT & K2 + 2 K3 + K4) - (15) = 1+1 [0.2+2 (0.1667)+2(0.1662)+0.1414] Mean $$\frac{1}{M} + \frac{1}{M} +$$ $$f(x) = \begin{cases} kx^{2} , -3 \le x \le 3 \\ 0 & elsewhere \end{cases}$$ we have $f(x) \ge 0$, if $k \ge 0$ If we must have $\int_{-\infty}^{3} f(x) dx = 1$ $$\Rightarrow \int_{-\infty}^{3} 0 dx + \int_{-3}^{3} kx^{2} dx + \int_{3}^{\infty} 0 dx = 1$$ $$k \frac{x^{3}}{3} \Big|_{-3}^{3} = 1$$ $$\Rightarrow \frac{k}{3} \Big[(3)^{5} - (-3)^{3} \Big] = 1 \Rightarrow \frac{k}{3} \Big[(54) = 1 \Big]$$ $$k = \frac{1}{18}$$ $$= \int_{-3}^{3} x \Big(\frac{1}{18}x^{2} \Big) dx = \frac{1}{18} \int_{-3}^{3} x^{3} dx$$ $$= \frac{1}{18} \Big(\frac{x^{4}}{4} \Big) \Big|_{-3}^{3} = \frac{1}{12} \Big[(3)^{4} - (-3)^{4} \Big] = 0$$ $$= \int_{-3}^{3} \frac{1}{18} x^{4} dx - $\chi_{-01}(58.0) \chi(59.0)^{20} = (\chi_{10})^{20}$ me pome box = ut bx fu-x by Bernand distribution, 01=28 ' SE-0=10 '01mgy '59.0 = d years living up to years. Let X be the moint porsions agod 60 is at least + will live & to be to fill of sol of will live p teamts (ii) of sol of one to be to Heat out of 10 men mon agod 60, (9) Exceeding q will ptiliobodous at 29 tooled 20.5 2: of 30 ot svil 8. The Percelectitity that a man aged so will perobability of Eaactly 9 men will have to be to is $P(x=q) = {}^{10}_{c_{q}}(0.65)^{q}(0.35)^{1}$ = 10! (0.65)9 (0.35) = 10 x (0.65) 4 x (0.35) P(x=9) = 0.0724 ii) Prob. of atmest 9 men will live to be to is $P(X \le 9) = 1 - p(x=10)$ = 1- (10 (0.65) 10 (0.35)0 = 1-0.0134 P(x49) = 0.9865 iii) Pro. of atleast 7 men will live to be to is P(x7,7) = P(7) + P(8) + P(9) + P(10)= 104 (0.65) + (0.35)3+ 10 (0.65)8 (0.35)2 + 10 (0.65) 9 (0.65) + 10 (0.65) (0.35) = $(120)(0.65)^{7}(0.35)^{8} + 45(0.65)^{8}(0.35)^{2}$ +10 (0.65)9 (0.35) + (0.65)10 p(x7,7) = 0.5138 / X = Sales in the shop ___(1) Given d = 1000 Rs. => x = 1000 Rs. (1) $f(x) = \begin{cases} \frac{1}{1000} e^{-\frac{x}{1000}}, & x>0 \\ 0, & \text{otherwise} \end{cases}$ Let & be "the amount for which profit is 8% AX8°/0 = 300 ⇒ A = 3750 Rs. Paob. of paofit exceeding Rc. 300 = Prob. (Profit >300) = P206. (Sales > 3750) Or P(x > 3750) $= \int (0.001)e^{-(.001)x} dx$ = e⁻³⁷⁷⁵ (on a single day) The prob. that it repeats on the following day is -3.75 x -3.75