USN					

USN

Internal Assessment Test 1 – Mar. 2018

Sub:	APPLIED HYI	DRAULICS				Sub Code:	15CV43	Branch:	CIVI	L	
Date:	13-03-18	Duration:	90 min's	Max Marks:	50	Sem/Sec:	IV/	A&B		OB	BE
		Answer any		Part A and ALL Part A	fron	Part B		M	ARKS	СО	RBT
1 (a)	For the most to side slope		_	al section sho	w tha	at half of to	p width is eq	_l ual	[07]	CO2	L2
(b)	1000 having	N=0.02. D	etermine tl	d 1.5m depth ne discharge. arge? Also c	Wha	t will be th	e dimensions	s of	[08]	CO2	L3
2 (a)	Derive Chezy	y's equation	for dischar	rge through ur	nifori	n flow in o	pen channel.		[07]	CO2	L2
(b)	20m^3 /s at a	velocity of	2 m/s so t	opes 1H to 4 hat the amour flining require	nt of	concrete lin	ning for bed	., .,	[08]	CO2	L3
3 (a)	at the rate of	$f 15 m^3 / s$.	Determine	4m and side the following type of flow	g i)	Critical dep	oth ii) Minim		[07]	CO2	L3

Internal Assessment Test 1 - Mar. 2018

Sub:	APPLIED HY	DRAULICS				Sub Code:	15CV43	Branch	: CIV	L	
Date:	13-03-18	Duration:	90 min's	Max Marks:	50	Sem/Sec:	IV	A&B		OE	BE
		Answer any		Part A and ALL Part A	fron	Part B		M	ARKS	СО	RBT
1 (a)	For the most to side slope		_	al section show	v th	at half of to	op width is ed	qual	[07]	CO2	L2
(b)	1000 having	N=0.02. D	etermine tl	d 1.5m depth one discharge. Varge? Also co	Wha	t will be th	e dimension	s of	[08]	CO2	L3
2 (a)	Derive Chez	y's equation	n for discha	rge through un	ifori	m flow in o	pen channel.		[07]	CO2	L2
(b)	20m^3 /s at a	velocity of	2 m/s so t	opes 1H to 4V hat the amoun lining require	t of	concrete li	ning for bed	•	[08]	CO2	L3
3 (a)	at the rate o	of $15 \text{ m}^3 / \text{s}$.	Determine	4m and side set the following type of flow i	g i)	Critical dep	oth ii) Minin		[07]	CO2	L3

3 (b)	Find the diameter of a circular pipe which is laid at a slope of 1 in 4000 and carries a discharge of $5\mathrm{m}^3/\mathrm{s}$ when flowing half full. Take N=0.012.	[08]	CO2	L3
	Part B			
4 (a)	Derive an expression for energy loss in a hydraulic jump.	[05]	CO3	L2
(b)	A sluice gate discharges water into a horizontal rectangular channel with a velocity 1m/s and depth of flow 0.6m. The width of channel is 7m. Determine whether a hydraulic jump will occur or not. If so determine its height and loss of energy.	[05]	CO3	L3
5 (a)	Derive an expression for gradually varied flow.	[05]	CO3	L2
(b)	Find the slope of free water surface in a rectangular channel of width 15m having depth of flow 4m. The discharge through the channel is $25m^3$ /s. The bed of channel has a slope 1 in 4000. Take C=60.	[05]	CO3	L3
CI	CCI HOD			
3 (b)				
, ,	Find the diameter of a circular pipe which is laid at a slope of 1 in 4000 and carries	[08]	CO2	L3
	Find the diameter of a circular pipe which is laid at a slope of 1 in 4000 and carries a discharge of $5\text{m}^3/\text{s}$ when flowing half full. Take N=0.012.	[08]	CO2	L3
	a discharge of 5m ³ /s when flowing half full. Take N=0.012. Part B			
4 (a)	a discharge of 5m ³ /s when flowing half full. Take N=0.012.	[08]	CO2	L3
4 (a) (b)	a discharge of 5m ³ /s when flowing half full. Take N=0.012. Part B			
	a discharge of 5m³/s when flowing half full. Take N=0.012. Part B Derive an expression for energy loss in a hydraulic jump. A sluice gate discharges water into a horizontal rectangular channel with a velocity 1m/s and depth of flow 0.6m. The width of channel is 7m. Determine whether a	[05]	CO3	L2
(b)	Part B Derive an expression for energy loss in a hydraulic jump. A sluice gate discharges water into a horizontal rectangular channel with a velocity 1m/s and depth of flow 0.6m. The width of channel is 7m. Determine whether a hydraulic jump will occur or not. If so determine its height.	[05] [05]	CO3	L2 L3