CMR INSTITUTE OF TECHNOLOGY	USN	TITLE	
	Internal Assessmen		
DESIGN & ANAL	VSIS of ALGORITHMS	u 1est - I	
		Co	ide: 15CS43
Date: 13 / 03/ 2018	Duration: 90 mins Max Mar	ks: 50 Sem: IV Br	anch: ISE
	Answer Any FIVE Comp	plete Questions.	
			Marks
1 Explain the asymp	totic notations for analysis o	f almost a	
answer with proper	graphs and examples.	Note: 11:	[10] 7
		Definition+egn+	graphy = 10
2 (a) Write the control	abstraction for the Divide &	Conquer technique thus	IDES
explaining the strate	gy.		
		[Algo/Deg	ln J = S
(b) Solve the following i	recurrence using substitution m a = 2, $b = 2$, $f(n) = n$	ethod for the case when the	1051 (3)
constants have values	a = 2, b = 2, f(n) = n	T011	H 17=0
T(n) = aT(n/b) + f(n) when n > 1	[& what	method) = S
T(n) = 1 when $n =$			
3 Consider the following			7103
Algorithm Mystery(n			[10]
//Input: a non negativ	e integer n		
s ← 0;			
for i ← 1 to n do			
S ← S + i*i;			
return S;			
a) What does this	algorithm compute? Sur of far	u.A 9/	
b) What is its basic	operation? Is	-2/2	
c) How many time	s is the basic operation execute	12 n 2/2 V	
d) What is the effic	iency class of this algorithm?	111000 - 2/1	
	,	what -242	
	OR		
You are given a set of n	elements. Your task is to desig	n an algorithm to find the	[10] CVM 13
maximum and minim	um element in the set. Use	the distance	
approach. The algorithm	should satisfy all the criteria of	f a good algorithm —	o (heyrence
The recurrence relation	for Strassen's algorithm for	Matrix multiplication is	101 COV
$T(n) = 7 T(n/2) + 18n^2$			
$T(n) = 1$; if $n \le 2$		[subst-1	Method)
Solve the recurrence and	determine its complexity.	- 10	
	Page 1 of 2	10	
	1 450 1 012		
			2

Write the algorithm for Merge Sort and solve its recurrence relation to [10] CO4 to determine its complexity.

What strategy does the Binary Search algorithm use? Write the recursive [10] CO4 Language algorithm for Binary Search and state its complexity.

OR

For the following code fragment, compute the worst case asymptotic [10] CO3 L3 complexity (as a function of n), where the loop body is a constant number of lines. You may assume the loop body to be a constant = 1

for (i = 0; i <= (n-1); i++) {
for (j = (i+1); j <= (n-1); j++) {
// loop body
}

equation (Summation + Solulaion (10)

What is an algorithm? Give 2 real world examples of algorithms which you [10] COI LI use in daily life. Give the criteria that a good algorithm should satisfy.

Creatively fetches nure

Liot

Scanned by CamScanner