
6 Explain different types of operations in python. Discuss their order of execution. [10]
CO1

L2

7 Write a program which repeatedly reads numbers until the user enters “done”. Once “done” is

entered, print the sum, minimum, maximum and average of the numbers. If the user enters

anything other than a number, print an error message and continue the current iteration again.

[10]

CO1
L3

8 Write a program to takes score between 0.0 and 1.0 as input. If the score is out of range, print

an error message. Create a function called computegrade which takes score as input and

returns grade as a string. If the score is between 0.0 and 1.0, print a grade using the following

table

Score Grade

>= 0.9 A

>= 0.8 B

>= 0.7 C

>= 0.6 D

< 0.6 F

[10]

CO1
L3

USN

Internal Assessment Test 1 – March 2018

Sub: Python Application Programming Sub Code: 15CS664 Branch: ECE / EEE

Date: 14/03/2018 Duration: 90 min‟s Max Marks: 50 Sem / Sec: ECE – C,D & EEE-A OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Explain computer hardware architecture with a neat diagram. [05]
CO1 L1

 (b) Discuss different types of errors in general. [05]
CO1

L1

2 (a) Explain chained conditional and nested conditional statements in python. [05]
CO1

L1

 (b) Write a program to find maximum in 3 numbers using nested if [05]
CO1

L3

3 (a) Why is type() function used ? Explain different „types‟ of values in python. [05]
CO1

L2

 (b) Write a program to convert Fahrenheit temperature to a Celsius temperature. [05]
CO1

L3

4 (a) Explain the usage of format operator with examples. [05]
CO2

L2

 (b) Write a program to count the number of letters in a string using while loop. [05]
CO2

L3

5 (a) Explain any two functions from math and two functions from random module [05]
CO1

L1

 (b) Explain the following built-in functions with example.

i. range() ii. input()

[05]

CO1
L1

1 a) Explain computer hardware architecture with a neat diagram.

The high-level definitions of these parts are as follows:

 The Central Processing Unit (or CPU) is the part of the computer that is built to be obsessed

with "what is next?" If your computer is rated at 3.0 Gigahertz, it means that the CPU will

ask "What next?" three billion times per second. You are going to have to learn how to talk
fast to keep up with the CPU.

 The Main Memory is used to store information that the CPU needs in a hurry. The main

memory is nearly as fast as the CPU. But the information stored in the main memory
vanishes when the computer is turned off.

 The Secondary Memory is also used to store information, but it is much slower than the main

memory. The advantage of the secondary memory is that it can store information even when

there is no power to the computer. Examples of secondary memory are disk drives or flash
memory (typically found in USB sticks and portable music players).

 The Input and Output Devices are simply our screen, keyboard, mouse, microphone, speaker,
touchpad, etc. They are all of the ways we interact with the computer.

 These days, most computers also have a Network Connection to retrieve information over a

network. We can think of the network as a very slow place to store and retrieve data that

might not always be "up". So in a sense, the network is a slower and at times unreliable form
of Secondary Memory.

1 b) Discuss different types of errors in general.

Three general types of errors are:

Syntax errors

These are the first errors you will make and the easiest to fix. A syntax error means that you

have violated the "grammar" rules of Python. Python does its best to point right at the line

and character where it noticed it was confused. The only tricky bit of syntax errors is that

sometimes the mistake that needs fixing is actually earlier in the program than where

Python noticed it was confused. So the line and character that Python indicates in a syntax

error may just be a starting point for your investigation.

Logic errors

A logic error is when your program has good syntax but there is a mistake in the order of the

statements or perhaps a mistake in how the statements relate to one another. A good example

of a logic error might be, "take a drink from your water bottle, put it in your backpack, walk

to the library, and then put the top back on the bottle."

Semantic errors

A semantic error is when your description of the steps to take is syntactically perfect and in

the right order, but there is simply a mistake in the program. The program is perfectly correct

but it does not do what you intended for it to do. A simple example would be if you were

giving a person directions to a restaurant and said, "...when you reach the intersection with

the gas station, turn left and go one mile and the restaurant is a red building on your left."

Your friend is very late and calls you to tell you that they are on a farm and walking around

behind a barn, with no sign of a restaurant. Then you say "did you turn left or right at the gas

station?" and they say, "I followed your directions perfectly, I have them written down, it

says turn left and go one mile at the gas station." Then you say, "I am very sorry, because

while my instructions were syntactically correct, they sadly contained a small but undetected

semantic error.”

2 a) Explain chained conditional and nested conditional statements in python.

Chained Conditional statement:

Sometimes in executions there are more than two possibilities/conditions and we need more than two

branches. One way to express a computation like that is a chained conditional:

if x < y:

 print('x is less than y')

elif x > y:

 print('x is greater than y')

else:

 print('x and y are equal')

elif is an abbreviation of "else if." Again, exactly one branch will be executed.

There is no limit on the number of elif statements. If there is an else clause, it has to be at the

end, but there doesn't have to be one. Each condition is checked in order. If the first is false, the

next is checked, and so on. If one of them is true, the corresponding branch executes, and the

statement ends. Even if more than one condition is true, only the first true branch executes.

Nested Conditional statement:

One conditional can also be nested within another. We could have written the three-branch

example like this:

if x == y:

 print('x and y are equal')

else:

 if x < y:

 print('x is less than y')

 else:

 print('x is greater than y')

The outer conditional contains two branches. The first branch contains a simple statement. The

second branch contains another if statement, which has two branches of its own. Those two

branches are both simple statements, although they could have been conditional statements as

well.

Logical operators often provide a way to simplify nested conditional statements. For example, we

can rewrite the following code using a single conditional:

if 0 < x:

 if x < 10:

 print('x is a positive single-digit number.')

The print statement is executed only if we make it past both conditionals, so we can get the same

effect with the and operator:

if 0 < x and x < 10:

 print('x is a positive single-digit number.')

2 b) Write a program to find maximum in 3 numbers using nested if

try:

 x=int(input("Enter 1st number"))

 y=int(input("Enter 2nd number"))

 z=int(input("Enter 3rd number"))

 if(x>=y):

 if(x>=z):

 print("Greater number is: ",x)

 elif(x<z):

 print("Greater number is: ",z)

 elif(y>=z):

 print("Greater number is: ",y)

 else:

 print("Greater number is: ",z)

except:

 print("Enter a number!!")

3 a) Why is type() function used ? Explain different „types‟ of values in

python.

 A value is one of the basic things a program works with, like a letter or a number. These

values belong to different types: 2 is an integer, and “Hello, World!” is a string, so called

because it contains a “string” of letters.

 If you are not sure what type a value has, the interpreter can tell you.

>>> type('Hello, World!')

<class 'str'>

>>> type(17)

<class 'int'>

 Less obviously, numbers with a decimal point belong to a type called float, because these

numbers are represented in a format called floating point.

>>> type(3.2)

<class 'float'>

3 b) Write a program to convert Fahrenheit temperature to a Celsius

temperature
inp = input('Enter Fahrenheit Temperature:')

try:

 fahr = float(inp)

 cel = (fahr - 32.0) * 5.0 / 9.0

 print(cel)

except:

 print('Please enter a number')

4 a) Explain the usage of format operator with examples.

 The format operator, % allows us to construct strings, replacing parts of the strings with

the data stored in variables. When applied to integers, % is the modulus operator. But

when the first operand is a string, % is the format operator.

 For example, the format sequence “%d” means that the second operand should be

formatted as an integer (d stands for “decimal”):

>>> camels = 42

>>> '%d' % camels

'42'

 A format sequence can appear anywhere in the string, so you can embed a value in a

sentence:

>>> camels = 42

>>> 'I have spotted %d camels.' % camels

'I have spotted 42 camels.'

 The following example uses “%d” to format an integer, “%g” to format a floating point

number (don‟t ask why), and “%s” to format a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'In 3 years I have spotted 0.1 camels.'

4 b) Write a program to count the number of letters in a string using while

loop.
str=input("Enter String :")

count=0

while count<len(str):

 count+=1

print("String length is : ",count)

5 a) Explain any two functions from math and two functions from random

module

Math Module

This module is always available. It provides access to the mathematical functions defined by the

C standard.

 math.ceil(x): Return the ceiling of x, the smallest integer greater than or equal to x.

 math.factorial(x): Return x factorial. Raises ValueError if x is not integral or is negative.

 math.floor(x): Return the floor of x, the largest integer less than or equal to x.

Random Module

 Pseudorandom numbers are not truly random because they are generated by a

deterministic computation, but just by looking at the numbers it is all but impossible to

distinguish them from random. The random module provides functions that generate

pseudorandom numbers.

 The function random returns a random float between 0.0 and 1.0 (including 0.0 but not

1.0).

import random

https://docs.python.org/3/library/exceptions.html#ValueError

for i in range(10):

x = random.random()

print(x)

 The random function is only one of many functions that handle random numbers. The

function randint takes the parameters low and high, and returns an integer between low

and high (including both).

>>> random.randint(5, 10)

5

>>> random.randint(5, 10)

9

5 b) Explain the following built-in functions with example.

i)Range Function

range() constructor has two forms of definition:

1. range(stop)

2. range(start, stop[, step])

range() Parameters

range() takes mainly three arguments having the same use in both definitions:

 start - integer starting from which the sequence of integers is to be returned

 stop - integer before which the sequence of integers is to be returned.

The range of integers end at stop - 1.

 step (Optional) - integer value which determines the increment between each integer in

the sequence

>>> range(1,10)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

ii) Input Function

Python provides a built-in function called input that gets input from the keyboard1. When this

function is called, the program stops and waits for the user to type something. When the user

presses Return or Enter, the program resumes and input returns what the user typed as a string.

>>> inp = input()

Some silly stuff

>>> print(inp)

Some silly stuff

Before getting input from the user, it is a good idea to print a prompt telling the user what to

input. You can pass a string to input to be displayed to the user before pausing for input:

>>> name = input('What is your name?\n')

What is your name?

Chuck

>>> print(name)

Chuck

If you expect the user to type an integer, you can try to convert the return value to int using the

int() function:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

>>> int(speed) + 5

22

6) Explain different types of operations in python. Discuss their order of

execution.
Operators are special symbols that represent computations like addition and multiplication.

The values the operator is applied to are called operands.

The operators +, -, *, /, and ** perform addition, subtraction, multiplication, division, and

exponentiation, as in the following examples:

Addition operation: Use operator +

>>> 5+2

7

Multiplication operation: Use operator *

>>>5*9

45

Division Operation:

There has been a change in the division operator between Python 2.x and Python 3.x. In Python

3.x, the result of this division is a floating point result:

>>> minute = 59

>>> minute/60

0.9833333333333333

The division operator in Python 2.0 would divide two integers and truncate the result to an

integer:

>>> minute = 59

>>> minute/60

0

To obtain the same answer in Python 3.0 use floored (// integer) division.

>>> minute = 59

>>> minute//60

0

In Python 3.0 integer division functions much more as you would expect if you entered the

expression on a calculator.

The modulus operator works on integers and yields the remainder when the first operand is

divided by the second. In Python, the modulus operator is a percent sign (%). The syntax is the

same as for other operators:

>>> quotient = 7 // 3

>>> print(quotient)

2

>>> remainder = 7 % 3

>>> print(remainder)

1

Order of operations

When more than one operator appears in an expression, the order of evaluation depends on the

rules of precedence. For mathematical operators, Python follows mathematical convention. The

acronym PEMDAS is a useful way to remember the rules:

 Parentheses have the highest precedence and can be used to force an expression to

evaluate in the order you want. Since expressions in parentheses are evaluated first, 2 *

(3-1) is 4, and (1+1) **(5-2) is 8. You can also use parentheses to make an expression

easier to read, as in (minute * 100) / 60, even if it doesn‟t change the result.

 Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and 3*1**3 is 3,

not 27.

 Multiplication and Division have the same precedence, which is higher than

 Addition and Subtraction, which also have the same precedence. So 2*3-1 is 5, not 4, and

6+4/2 is 8.0, not 5.

 Operators with the same precedence are evaluated from left to right. So the expression 5-

3-1 is 1, not 3, because the 5-3 happens first and then 1 is subtracted from 2.

7) Write a program which repeatedly reads numbers until the user enters

“done”. Once “done” is entered, print the sum, minimum, maximum and

average of the numbers. If the user enters anything other than a number,

print an error message and continue the current iteration again.

total=0

count=0

max=None

min=None

while True:

 print("Menu")

 print("1. Enter a number 2. Quit")

 choice=int(input("Enter your choice"))

 if(choice==1):

 try:

 num=int(input("Enter number"))

 if(min== None or num<min):

 min=num

 if(max==None or num>max):

 max=num

 total=total+num

 count=count+1

 except:

 print("Enter a valid value")

 elif(choice==2):

 txt=input("Enter done")

 if(txt=='done'):

 break;

print("Total is ",total)

print("Count is ", count)

print("Average is ",(total/count))

print("Maximum is ",max)

print("Minimum is ", min)

8) Write a program to takes score between 0.0 and 1.0 as input. If the score is out of range,

print an error message. Create a function called computegrade which takes score as input

and returns grade as a string. If the score is between 0.0 and 1.0, print a grade using the

following table

Score Grade

>= 0.9 A

>= 0.8 B

>= 0.7 C

>= 0.6 D

< 0.6 F

'''Program to compute grade'''

def computegrade(score):

 if score > 1.0 or score < 0.0:

 return 'Bad score'

 elif score >= 0.9:

 return 'A'

 elif score >= 0.8:

 return 'B'

 elif score >= 0.7:

 return 'C'

 elif score >= 0.6:

 return 'D'

 else:

 return 'F'

inp = input('Enter score: ')

try:

 score = float(inp)

 grade=computegrade(score)

 print("The grade is :",grade)

except:

 print("Enter a number!!")

