

DEPARTMENT OF COMPUTER SCIENCE

15CS64 – OPERATING SYSTEMS

IAT – 1 SOLUTION

1.a) What is an Operating System? Explain with user and system view points.[5]

• An OS is an intermediary between the user of the computer & the computer hardware.

• It provides a basis for application program & acts as an intermediary between user of

computer & computer hardware.

• The purpose of an OS is to provide a environment in which the user can execute the

program in a convenient & efficient manner.

• OS is an important part of almost every computer systems.

User Views:- The user view of the computer depends on the interface used.

• SOME USERS MAY USE PC’S. In this the system is designed so that only one user can

utilize

the resources and mostly for ease of use where the attention is mainly on performances

and not on the resource utilization.

• Some users may use a terminal connected to a mainframe or minicomputers.

• Other users may access the same computer through other terminals. These users may share

resources and exchange information. In this case the OS is designed to maximize resource

utilization- so that all available CPU time, memory & I/O are used efficiently.

• Other users may sit at workstations, connected to the networks of other workstation and

servers. In this case OS is designed to compromise between individual visibility &resource

utilization.

System Views:-We can view system as resource allocator i.e. a computer system has many

resources that may be used to solve a problem. The OS acts as a manager of these resources.

The OS must decide how to allocate these resources to programs and the users so that it can

operate the computer system efficiently and fairly.

• A different view of an OS is that it need to control various I/O devices & user Programs i.e.

an OS is a control program used to manage the execution of user program to prevent errors

and improper use of the computer.

Resources can be either CPU Time, memory space, file storage space, I/O devices and so on.

b) Explain any 2 facilities provided for implementing the interacting process in programming

language and operating system.[5]

User Operating-System Interface

2.2.1 Command Interpreter

 Gets and processes the next user request, and launches the requested programs.

 In some systems the CI may be incorporated directly into the kernel.

 More commonly the CI is a separate program that launches once the user logs in

or otherwise accesses the system.

 UNIX, for example, provides the user with a choice of different shells, which

may either be configured to launch automatically at login, or which may be

changed on the fly. (Each of these shells uses a different configuration file of

initial settings and commands that are executed upon startup.)

 Different shells provide different functionality, in terms of certain commands

that are implemented directly by the shell without launching any external

programs. Most provide at least a rudimentary command interpretation structure

for use in shell script programming (loops, decision constructs, variables, etc.)

 An interesting distinction is the processing of wild card file naming and I/O re-

direction. On UNIX systems those details are handled by the shell, and the

program which is launched sees only a list of filenames generated by the shell

from the wild cards. On a DOS system, the wild cards are passed along to the

programs, which can interpret the wild cards as the program sees fit.

2. a) What are system calls? List the categories of system calls.[5]

 System provides interface between the process & the OS.

 The calls are generally available as assembly language instruction & certain system

allow system calls to be made directly from a high level language program.

 Several languages have been defined to replace assembly language program.

 System calls occuring different ways depending on the computer. Sometime more

information is needed to identify the desired system call. The exact type & amount of

information needed may vary according to the Particular OS & call.

System calls may be grouped roughly into 5 categories

b) List 3 advantages of multiprocessor systems. Also, bring out the difference between

graceful degradation and fault tolerance in this context.[5]

Advantages:

1. Increased Throughput

 By increasing no. of processors, we expect to get more work done in less time.

2. Economy of Scale

 These systems are cheaper because they can share

 → peripherals → mass-storage → power-supply.

 If many programs operate on same data, they will be stored on one disk & all

processors can

share them.

3. Increased Reliability

 The failure of one processor will not halt the system.

Graceful Degradation:

 The ability to continue providing service proportional to the level of surviving hardware.

Fault Tolerance:

Some systems go beyond graceful degradation is fault tolerance.

3. List and explain the functions and services of an operating system.[10]

An OS provides services for the execution of the programs and the users of such programs.

The services provided by one OS may be different from other OS. OS makes the

programming task easier.

The common services provided by the OS are

1. Program Execution:- The OS must able to load the program into memory & run that

program. The program must end its execution either normally or abnormally.

2. I/O Operation:- A program running may require any I/O. This I/O may be a file or a

specific

device users cant control the I/O device directly so the OS must provide a means for

controlling I/O devices.

3. File System Interface:- Program need to read or write a file. The OS should

provide permission for the creation or deletion of files by names.

4. Communication:- In certain situation one process may need to exchange information

with another process. This communication May takes place in two ways.

a. Between the processes executing on the same computer.

b. Between the processes executing on different computer that are connected by anetwork.

This communication can be implemented via shared memory or by OS.

5. Error Detection:- Errors may occur in CPU, I/O devices or in M/y H/w. The OS

constantly needs to be aware of possible errors. For each type of errors the OS should take

appropriate actions to ensure correct & consistent computing.

OS with multiple users provides the following services,

a. Resource Allocation:-When multiple users logs onto the system or when multiple jobs are

running, resources must

be allocated to each of them. The OS manages different types of OS resources. Some

resources may need some

special allocation codes & others may have some general request & release code.

b. Accounting:-We need to keep track of which users use how many & what kind of

resources. This record keeping may be used for accounting. This accounting data may be

used for statistics or billing. It can also be used to improve

system efficiency.

c. Protection:-Protection ensures that all the access to the system are controlled. Security

starts with each user having authenticated to the system, usually by means of a password.

External I/O devices must also be protected from invalid access. In multi process

environment it is possible that one process may interface with the other or with the OS, so

protection is required.

4. Explain process states with state transition diagram. Also, explain the PCB with a neat

diagram.[10]

Process State

 Processes may be in one of 5 states, as shown in Figure 3.2 below.

o New - The process is in the stage of being created.

o Ready - The process has all the resources available that it needs to

run, but the CPU is not currently working on this process's

instructions.

o Running - The CPU is working on this process's instructions.

o Waiting - The process cannot run at the moment, because it is waiting

for some resource to become available or for some event to occur. For

example the process may be waiting for keyboard input, disk access

request, inter-process messages, a timer to go off, or a child process to

finish.

o Terminated - The process has completed.

 The load average reported by the "w" command indicate the average

number of processes in the "Ready" state over the last 1, 5, and 15 minutes,

i.e. processes who have everything they need to run but cannot because the

CPU is busy doing something else.

 Some systems may have other states besides the ones listed here.

Figure - Diagram of process state

Process Control Block

For each process there is a Process Control Block, PCB,

which stores the following (types of) process-specific

information, as illustrated in Figure 3.1. (Specific details

may vary from system to system.)

 Process State - Running, waiting, etc., as discussed above.

 Process ID, and parent process ID.

 CPU registers and Program Counter - These need to be saved and

restored when swapping processes in and out of the CPU.

 CPU-Scheduling information - Such as priority information and pointers

to scheduling queues.

 Memory-Management information - E.g. page tables or segment tables.

 Accounting information - user and kernel CPU time consumed, account

numbers, limits, etc.

 I/O Status information - Devices allocated, open file tables, etc.

Figure 3.3 - Process control block (PCB)

5. Define virtual machines. With a neat diagram explain the working of virtual machines and

its benefits.[10]

 A virtual machine takes the layered approach to its logical conclusion. It treats

hardware and the operating system kernel as though they were all hardware

 A virtual machine provides an interface identical to the underlying bare hardware

 The operating system creates the illusion of multiple processes, each executing on its

own processor with its own (virtual) memory

 The resources of the physical computer are shared to create the virtual machines

o CPU scheduling can create the appearance that users have their own processor

o Spooling and a file system can provide virtual card readers and virtual line

printers

o A normal user time-sharing terminal serves as the virtual machine operator’s

console

 (a) Nonvirtual machine (b) virtual machine

 The virtual-machine concept provides complete protection of system resources

since each virtual machine is isolated from all other virtual machines. This

isolation, however, permits no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-systems research and

development. System development is done on the virtual machine, instead of on

a physical machine and so does not disrupt normal system operation.

 The virtual machine concept is difficult to implement due to the effort required to

provide an exact duplicate to the underlying machine

VMware Architecture

The Java Virtual Machine

6. a) Discuss 3 common ways of establishing a relationship between the user thread and the

kernel thread.[5]

Multithreading Models

 There are two types of threads to be managed in a modern system: User threads and

kernel threads.

 User threads are supported above the kernel, without kernel support. These are the

threads that application programmers would put into their programs.

 Kernel threads are supported within the kernel of the OS itself. All modern OSes

support kernel level threads, allowing the kernel to perform multiple simultaneous

tasks and/or to service multiple kernel system calls simultaneously.

 In a specific implementation, the user threads must be mapped to kernel threads, using

one of the following strategies.

Many-To-One Model

 In the many-to-one model, many user-level threads are all mapped onto a

single kernel thread.

 Thread management is handled by the thread library in user space, which

is very efficient.

 However, if a blocking system call is made, then the entire process

blocks, even if the other user threads would otherwise be able to

continue.

 Because a single kernel thread can operate only on a single CPU, the

many-to-one model does not allow individual processes to be split across

multiple CPUs.

 Green threads for Solaris and GNU Portable Threads implement the

many-to-one model in the past, but few systems continue to do so today.

Figure Many-to-one model

One-To-One Model

 The one-to-one model creates a separate kernel thread to handle each user

thread.

 One-to-one model overcomes the problems listed above involving

blocking system calls and the splitting of processes across multiple CPUs.

 However the overhead of managing the one-to-one model is more

significant, involving more overhead and slowing down the system.

 Most implementations of this model place a limit on how many threads

can be created.

 Linux and Windows from 95 to XP implement the one-to-one model for

threads.

Figure - One-to-one model

4.3.3 Many-To-Many Model

 The many-to-many model multiplexes any number of user threads onto

an equal or smaller number of kernel threads, combining the best features

of the one-to-one and many-to-one models.

 Users have no restrictions on the number of threads created.

 Blocking kernel system calls do not block the entire process.

 Processes can be split across multiple processors.

 Individual processes may be allocated variable numbers of kernel threads,

depending on the number of CPUs present and other factors.

Figure 4.7 - Many-to-many model

 One popular variation of the many-to-many model is the two-tier model,

which allows either many-to-many or one-to-one operation.

 IRIX, HP-UX, and Tru64 UNIX use the two-tier model, as did Solaris

prior to Solaris 9.

Two-level model

b) Explain the Operating System operations.[5]

Operations on Processes

1. Process Creation and

2. Process Termination

Process Creation

• A process may create a new process via a create-process system-call.

• The creating process is called a parent-process.

The new process created by the parent is called the child-process (Sub-process).

• OS identifies processes by pid (process identifier), which is typically an integer-number.

• A process needs following resources to accomplish the task:

→ CPU time

→ memory and

→ I/0 devices.

• Child-process may

→ get resources directly from the OS or

→ get resources of parent-process. This prevents any process from overloading the system.

• Two options exist when a process creates a new process:

1. The parent & the children execute concurrently.

2. The parent waits until all the children have terminated.

• Two options exist in terms of the address-space of the new process:

1. The child-process is a duplicate of the parent-process (it has the same program and data

as the parent).

2. The child-process has a new program loaded into it.

Process creation in UNIX

• In UNIX, each process is identified by its process identifier (pid), which is a unique integer.

• A new process is created by the fork() system-call (Figure 2.7 & 2.8).

• The new process consists of a copy of the address-space of the original process.

• Both the parent and the child continue execution with one difference:

1. The return value for the fork() is zero for the new (child) process.

2. The return value for the fork() is nonzero pid of the child for the parent-process.

• Typically, the exec() system-call is used after a fork() system-call by one of the two

processes to replace the process's memory-space with a new program.

• The parent can issue wait() system-call to move itself off the ready-queue.

Process Termination

• A process terminates when it executes the last statement (in the program).

• Then, the OS deletes the process by using exit() system-call.

• Then, the OS de-allocates all the resources of the process. The resources include

→ memory

→ open files and

→ I/0 buffers.

• Process termination can occur in following cases:

→ A process can cause the termination of another process via TerminateProcess() system-

call.

→ Users could arbitrarily kill the processes.

• A parent terminates the execution of children for following reasons:

1. The child has exceeded its usage of some resources.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the OS does not allow a child to continue.

• In some systems, if a process terminates, then all its children must also be terminated.
This phenomenon is referred to as cascading termination.

7. a) What is IPC? Explain direct and indirect communications with respect to message

passing systems.[5]

Interprocess communication is a Mechanism for processes to communicate and to

synchronize their actions.

Message system – processes communicate with each other without resorting to shared

variables

IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

Direct Communication

Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

Messages are directed and received from mailboxes (also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

send (A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox B

Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

b) Explain dual mode operation in OS with a neat diagram.[5]

Dual Mode Operation

Problem: We must be able to differentiate between the execution of

 → OS code and

 → user-defined code.

Solution: Most computers provide hardware-support.

 We have two modes of operation (Figure 1.9):

1. User mode and

2. Kernel mode

 A mode bit is a bit added to the hardware of the computer to indicate the current

mode:

i.e. kernel (0) or user (1)

Working principle:

1. At system boot time, the hardware starts in kernel-mode.

2. The OS is then loaded and starts user applications in user-mode.

3. Whenever a trap or interrupt occurs, the hardware switches from user-mode to kernel-

mode

(that is, changes the state of the mode bit to 0).

4. The system always switches to user-mode (by setting the mode bit to 1) before passing

control to a user-program.

• Dual mode protects

→ OS from errant users and

→ errant users from one another.

• Privileged instruction is executed only in kernel-mode.

• If an attempt is made to execute a privileged instruction in user-mode, the hardware

treats it as

illegal and traps it to the OS.

• A system calls are called by user-program to ask the OS to perform the tasks on behalf

of the user program.

8. Briefly explain threading issues in multithreading.[10]

Threading Issues

The fork() and exec() System Calls

 Q: If one thread forks, is the entire process copied, or is the new process single-

threaded?

 A: System dependant.

 A: If the new process execs right away, there is no need to copy all the other

threads. If it doesn't, then the entire process should be copied.

 A: Many versions of UNIX provide multiple versions of the fork call for this

purpose.

Signal Handling

 Q: When a multi-threaded process receives a signal, to what thread should that

signal be delivered?

 A: There are four major options:

 Deliver the signal to the thread to which the signal applies.

 Deliver the signal to every thread in the process.

 Deliver the signal to certain threads in the process.

 Assign a specific thread to receive all signals in a process.

 The best choice may depend on which specific signal is involved.

 UNIX allows individual threads to indicate which signals they are accepting and

which they are ignoring. However the signal can only be delivered to one thread,

which is generally the first thread that is accepting that particular signal.

 UNIX provides two separate system calls, kill(pid, signal) and pthread_kill(

tid,signal), for delivering signals to processes or specific threads respectively.

 Windows does not support signals, but they can be emulated using Asynchronous

Procedure Calls (APCs). APCs are delivered to specific threads, not processes.

Thread Cancellation

 Threads that are no longer needed may be cancelled by another thread in one of

two ways:

 Asynchronous Cancellation cancels the thread immediately.

 Deferred Cancellation sets a flag indicating the thread should cancel itself when

it is convenient. It is then up to the cancelled thread to check this flag

periodically and exit nicely when it sees the flag set.

 (Shared) resource allocation and inter-thread data transfers can be problematic

with asynchronous cancellation.

Thread-Specific Data

 Most data is shared among threads, and this is one of the major benefits of using

threads in the first place.

 However sometimes threads need thread-specific data also.

 Most major thread libraries (pThreads, Win32, Java) provide support for thread-

specific data, known as thread-local storage or TLS. Note that this is more like

static data than local variables,because it does not cease to exist when the

function ends.

Scheduler Activations

 Many implementations of threads provide a virtual processor as an interface

between the user thread and the kernel thread, particularly for the many-to-many

or two-tier models.

 This virtual processor is known as a "Lightweight Process", LWP.

 There is a one-to-one correspondence between LWPs and kernel threads.

 The number of kernel threads available, (and hence the number of LWPs) may

change dynamically.

 The application (user level thread library) maps user threads onto available

LWPs.

 kernel threads are scheduled onto the real processor(s) by the OS.

 The kernel communicates to the user-level thread library when certain events

occur (such as a thread about to block) via an upcall, which is handled in the

thread library by an upcall handler. The upcall also provides a new LWP for the

upcall handler to run on, which it can then use to reschedule the user thread that

is about to become blocked. The OS will also issue upcalls when a thread

becomes unblocked, so the thread library can make appropriate adjustments.

 If the kernel thread blocks, then the LWP blocks, which blocks the user thread.

 Ideally there should be at least as many LWPs available as there could be

concurrently blocked kernel threads. Otherwise if all LWPs are blocked, then

user threads will have to wait for one to become available.

Figure - Lightweight process (LWP)

	User Operating-System Interface
	2.2.1 Command Interpreter
	Process State
	Process Control Block

	Multithreading Models
	Many-To-One Model
	One-To-One Model
	4.3.3 Many-To-Many Model

	Threading Issues
	The fork() and exec() System Calls
	Signal Handling
	Thread Cancellation
	Thread-Specific Data
	Scheduler Activations

