
 

 

CMR  
INSTITUTE OF 
TECHNOLOGY 

 

 

                                                   

USN           
 

First Internal  Test  

Sub: MOBILE APPLICATION DEVELOPMENT Code:       15CS661 

Date: 
14 / 03 / 

2018 
Duration: 

 90 
mins 

Max 
Marks:  

   50 Sem:   VI Branch: ISE,CSE 

Answer Any FIVE FULL Questions 

 
Marks 

OBE 

CO RBT 

 1 (a) What is Android? Explain Android architecture with block diagram? 

. 

 

[10] CO1 L2 

2 (a) What do you mean by Layout? Explain different Types of it? 

 

   [10] CO1 L4 

3 (a)  Explain about different Resources available in android? How can 

you use this in app development? 

  

   [10] CO1 L4 

4 (a) What are Intents? Differentiate between Explicit Intent and Implicit Intent 

with a suitable note? 
 

   [10] CO2 L3 

 

       

 

1. What is Android? Explain android Stack? 

Explanation+block diagram-5+5 

Android is an open source Linux based operating system which is a product of Google Inc.(after 

acquiring from Android Inc.). Initially it was developed for touch screen mobile phones, but now it 
is also available for tablets, smart watch and Android Auto too. It is written in C, C++ and Java. 

5 (a)  Explain Activity lifecycle states and its callback methods? 

 

[10] CO1 L2 

6 (a)  What are different basic components of an Android 

application? 

[05] CO1 L4 

   (b) Explain the role of AndroiManifest.xml file in an Android 

application? 

[05] CO1 L3 

7 (a)    How can you create options menu and floating contextual 

menu in android?   

Explain it  with the help of the code snippet. 

 

[10] CO2 L4 



For developing the Android applications Android SDK is available with all supportive tools. You 
can also state that, android is a system that includes an open source operating system, an open 

source development platform and devices that run the operating system and applications created 

for it. It has become the multi-billion dollar industry since its inception, so there is lots of space for 

earning for developers and users. 

Android Developer 

Fundamentals  

This work is licensed under a Creative 

Commons Attribution-NonCommercial 
4.0 International License

Introduction to 

Android

Android stack

1

1. System and user apps

2. Android OS API in 

Java framework

3. Expose native APIs; 

run apps

4. Expose device 

hardware capabilities

5. Linux Kernel

 

1. Apps: Your apps live at this level, along with core system apps for email, SMS messaging, calendars, 

Internet browsing, or contacts. 

2. Java API Framework: All features of Android are available to developers through application 

programming interfaces (APIs) written in the Java language. You don't need to know the details of all of 

the APIs to learn how to develop Android apps, but you can learn more about the following APIs, which 

are useful for creating apps: 

View System used to build an app's UI, including lists, buttons, and menus. 

Resource Manager used to access to non-code resources such as localized strings, graphics, and layout 

files. 

Notification Manager used to display custom alerts in the status bar. 

Activity Manager that manages the lifecycle of apps. 

Content Providers that enable apps to access data from other apps. 

All framework APIs that Android system apps use. 

3. Libraries and Android Runtime: Each app runs in its own process and with its own instance of the 

Android Runtime, which enables multiple virtual machines on low-memory devices. Android also 

includes a set of core runtime libraries that provide most of the functionality of the Java programming 

language, including some Java 8 language features that the Java API framework uses. Many core Android 



system components and services are built from native code that requires native libraries written in C 

and C++. These native libraries are available to apps through the Java API framework. 

4. Hardware Abstraction Layer (HAL): This layer provides standard interfaces that expose device 

hardware capabilities to the higher-level Java API framework. The HAL consists of multiple library 

modules, each of which implements an interface for a specific type of hardware component, such as the 

camera or bluetooth module. 

5. Linux Kernel: The foundation of the Android platform is the Linux kernel. The above layers rely on the 

Linux kernel for underlying functionalities such as threading and low-level memory management. Using 

a Linux kernel enables Android to take advantage of key security features and allows device 

manufacturers to develop hardware drivers for a well-known kernel. 

 

2.Explain about Layouts ?Explain different Types of it? 

 Layout Explanation+atleast 5 categories explanation-5+5 

 

Layouts  

 are specific types of view groups  

 are subclasses of ViewGroup  

 contain child views  

 can be in a row, column, grid, table, absolute  

LinearLayout: A group of child views positioned and aligned horizontally or vertically. 

RelativeLayout: A group of child views in which each view is positioned and aligned relative to other 

views within the view group. In other words, the positions of the child views can be described in relation 

to each other or to the parent view group. 

ConstraintLayout: A group of child views using anchor points, edges, and guidelines to control how 

views are positioned relative to other elements in the layout. ConstraintLayout was designed to make it 

easy to drag and drop views in the layout editor. 

TableLayout: A group of child views arranged into rows and columns. 

AbsoluteLayout: A group that lets you specify exact locations (x/y coordinates) of its child views. 

Absolute layouts are less flexible and harder to maintain than other types of layouts without absolute 

positioning. 

https://developer.android.com/reference/android/view/ViewGroup.html


FrameLayout: A group of child views in a stack. FrameLayout is designed to block out an area on the 

screen to display one view. Child views are drawn in a stack, with the most recently added child on top. 

The size of the FrameLayout is the size of its largest child view. 

GridLayout: A group that places its child screens in a rectangular grid that can be scrolled. 

 

 

 

3. Explain about different Resources available in android ?how can you handle this? 

Explanation+acess-5+5 

 

Resource files 

Resource files are a way of separating static values from code so that you don't have to change the code 

itself to change the values. You can store all the strings, layouts, dimensions, colors, styles, and menu 

text separately in resource files.Resource files are stored in folders located in the res folder, including: 

drawable: For images and icons 

layout: For layout resource files 

menu: For menu items 

mipmap: For pre-calculated, optimized collections of app icons used by the Launcher 

values: For colors, dimensions, strings, and styles (theme attributes). 

 

The syntax to reference a resource in an XML layout is as follows: 

@package_name:resource_type/resource_name 



The package_name is the name of the package in which the resource is located. This is not required 

when referencing resources from the same package — that is, stored in the res folder of your project. 

resource_type is the R subclass for the resource type. See Resource Types for more information about 

each resource type and how to reference them. 

resource_name is either the resource filename without the extension, or the android:name attribute 

value in the XML element. 

For example, the following XML layout statement sets the android:text attribute to a string resource: 

android:text="@string/button_label_toast" 

The resource_type is string . 

The resource_name is button_label_toast. 

 

Values resource files 

Keeping values such as strings and colors in separate resource files makes it easier to manage them, 

especially if you use them more than once in your layouts. 

For example, it is essential to keep strings in a separate resource file for translating and localizing your 

app, so that you can create a string resource file for each language without changing your code. 

Resource files for images, colors, dimensions, and other attributes are handy for developing an app for 

different device screen sizes and orientations. 

Strings 

String resources are located in the strings.xml file in the values folder inside the res folder when using 

the Project:Android view. You can edit this file directly by opening it: 

<resources> 

<string name="app_name">Hello Toast</string> 

<string name="button_label_count">Count</string> 

<string name="button_label_toast">Toast</string> 

<string name="count_initial_value">0</string> 

</resources> 

The name (for example, button_label_count ) is the resource name you use in your XML code, as in the 

following attribute: 



android:text="@string/button_label_count" 

The string value of this name is the word ( Count ) enclosed within the <string></string> tags (you don't 

use quotation marks unless the quotation marks should be part of the string value.) 

4.What are Intents? Differentiate between Explicit Intent and Implicit Intent with a suitable 

note.? 

Explanation+block diagram-5+5 

 

 

 

 

 

 



 

 

 

Eg: Show a web page 

Uri uri = Uri.parse("http://www.google.com");  

Intent it = new Intent(Intent.ACTION_VIEW,uri);  

startActivity(it);  

 

5. Activity states and lifecycle callback methods 

Explanation+ diagram-5+5 

 

When an activity transitions into and out of the different lifecycle states as it runs, the Android system 

calls several lifecycle callback methods at each stage. All of the callback methods are hooks that you can 

override in each of your Activity classes to define how that activity behaves when the user leaves and re-

enters the activity. Keep in mind that the lifecycle states (and callbacks) are per activity, not per app, 



and you may implement different behavior at different points in the lifecycle for different activities in 

your app. 

1

● Created (not visible yet)

● Started (visible)

● Resume (visible)

● Paused(partially invisible)

● Stopped (hidden)

● Destroyed (gone from memory)

State changes are triggered by user action, configuration 

changes such as device rotation, or system action 

 

8

onCreate(Bundle savedInstanceState)—static initialization

onStart()—when activity (screen) is becoming visible

onRestart()—called if activity was stopped (calls onStart())

onResume()—start to interact with user

onPause()—about to resume PREVIOUS activity

onStop()—no longer visible, but still exists and all state info preserved

onDestroy()—final call before Android system destroys activity

 



9  

 Called when the activity is first created, for example 

when user taps launcher icon

 Does all static setup: create views, bind data to lists 

... 

 Only called once during an activity's lifetime

 Created state is always followed by onStart()

11  

12

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// The activity is being created.

}

 



15

● Called after activity has been stopped, immediately before 

it is started again

● Always followed by onStart()

 

15

● Called after activity has been stopped, immediately before 

it is started again

● Always followed by onStart()

  

19

● Called when system is about to resume a previous activity

● The activity is partly visible but user is leaving the activity

● Typically used to commit unsaved changes to persistent data, stop 

animations and anything that consumes resources 

● Implementations must be fast because the next activity is not 

resumed until this method returns

● Followed by either onResume() if the activity returns back to the front, 

or onStop() if it becomes invisible to the user

 



 

23

● Final call before activity is destroyed

● User navigates back to previous activity, or configuration 

changes

● Activity is finishing or system is destroying it to save space

● Call isFinishing() method to check

● System may destroy activity without calling this, so use 

onPause() or onStop() to save data or state     

 

 

 

 

6.a. What are different basic components of an Android application? 

Here are following four main components that can be used within an Android application − 

Sr.No Components & Description 

1 Activities 

They dictate the UI and handle the user interaction to the smart phone 



screen. 

2 

Services 

They handle background processing associated with an application. 

3 

Broadcast Receivers 

They handle communication between Android OS and applications. 

4 

Content Providers 

They handle data and database management issues. 

Activities 

An activity represents a single screen with a user interface,in-short Activity performs actions on the 

screen. For example, an email application might have one activity that shows a list of new emails, 

another activity to compose an email, and another activity for reading emails. If an application has 

more than one activity, then one of them should be marked as the activity that is presented when 

the application is launched. 

An activity is implemented as a subclass of Activity class as follows − 

public class MainActivity extends Activity { 

} 

Services 

A service is a component that runs in the background to perform long-running operations. For 

example, a service might play music in the background while the user is in a different application, or 

it might fetch data over the network without blocking user interaction with an activity. 

A service is implemented as a subclass of Service class as follows − 

public class MyService extends Service { 

} 

Broadcast Receivers 

Broadcast Receivers simply respond to broadcast messages from other applications or from the 

system. For example, applications can also initiate broadcasts to let other applications know that 

some data has been downloaded to the device and is available for them to use, so this is broadcast 

receiver who will intercept this communication and will initiate appropriate action. 



A broadcast receiver is implemented as a subclass of BroadcastReceiverclass and each message is 

broadcaster as an Intent object. 

public class MyReceiver  extends  BroadcastReceiver { 

   public void onReceive(context,intent){} 

} 

Content Providers 

A content provider component supplies data from one application to others on request. Such requests 

are handled by the methods of the ContentResolverclass. The data may be stored in the file system, 

the database or somewhere else entirely. 

A content provider is implemented as a subclass of ContentProvider class and must implement a 

standard set of APIs that enable other applications to perform transactions. 

public class MyContentProvider extends  ContentProvider { 

   public void onCreate(){} 

} 

 

 

 

 

 

 

6.b Explain the role of AndroiManifest.xml file in an Android application? 

Structure+content  details-2.5+2.5 

The AndroidManifest.xml file contains information of your package, including components of the 
application such as activities, services, broadcast receivers, content providers etc. 

It performs some other tasks also: 

o It is responsible to protect the application to access any protected parts by providing the 

permissions. 

o It also declares the android api that the application is going to use. 



o It lists the instrumentation classes. The instrumentation classes provides profiling and 

other informations. These informations are removed just before the application is published 

etc. 

This is the required xml file for all the android application and located inside the root directory. 

Elements of the AndroidManifest.xml file 

The elements used in the above xml file are described below. 

<manifest> 

manifest is the root element of the AndroidManifest.xml file. It has package attribute that describes 
the package name of the activity class. 

<application> 

application is the subelement of the manifest. It includes the namespace declaration. This element 
contains several subelements that declares the application component such as activity etc. 

The commonly used attributes are of this element are icon, label, theme etc. 

android:icon represents the icon for all the android application components. 

android:label works as the default label for all the application components. 

android:theme represents a common theme for all the android activities. 

<activity> 

activity is the subelement of application and represents an activity that must be defined in the 
AndroidManifest.xml file. It has many attributes such as label, name, theme, launchMode etc. 

android:label represents a label i.e. displayed on the screen. 

android:name represents a name for the activity class. It is required attribute. 

<intent-filter> 

intent-filter is the sub-element of activity that describes the type of intent to which activity, service 
or broadcast receiver can respond to. 

<action> 

It adds an action for the intent-filter. The intent-filter must have at least one action element. 

<category> 

It adds a category name to an intent-filter. 



7.Explain options menu and contextual menu in android? 

Explanation+ steps to make it(5+5) 

Options menu and app bar 

The options menu is the primary collection of menu items for an activity. It's where you should place actions that 

have a global impact on the app, such as "Search," "Compose email," and "Settings." 

1. XML menu resource (menu_main.xml)  

2. onCreateOptionsMenu() to inflate the menu  

3. onClick attribute or onOptionsItemSelected()  

4. Method to handle item click  

 

Context menu and contextual action mode 

A context menu is a floating menu that appears when the user performs a long-click on an element. It provides 

actions that affect the selected content or context frame. 

The contextual action mode displays action items that affect the selected content in a bar at the top of the screen 

and allows the user to select multiple items. 

1. Create XML menu resource file and assign appearance and position attributes  

2. Register view to use a context menu using registerForContextMenu()  

3. Implement onCreateContextMenu() in the activity or fragment to inflate the menu  

4. Implement onContextItemSelected() to handle menu item clicks  

5. Create a method to perform an action for each context menu item  

 

https://developer.android.com/guide/topics/ui/menus.html#options-menu
https://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
https://developer.android.com/guide/topics/ui/menus.html#CAB


 


	Activities
	Services
	Broadcast Receivers
	Content Providers
	Elements of the AndroidManifest.xml file
	<manifest>
	<application>
	<activity>
	<intent-filter>
	<action>
	<category>


