USN					

Internal Assessment Test 1 – March 2018

Sub:	OPERATING	SYSTEMS				Sub Code:	15CS64	Branch:	CSE	
Date:	13/03/2018	13/03/2018 Duration: 90 min's Max Marks: 50 Sem / Sec: A & B								
		MA RKS	СО	RBT						
1 (a)) Why is dual mode operation in OS required? Explain.									L4
(b)	Explain the sa	[06]	CO1&CO2	L4						
2 (a)	Define an OS'	? Discuss its	s role with 1	espect to user	and	system viev	w points.	[06]	CO1&CO2	L2
(b)	Explain any two types of system calls.								CO1&CO2	L4
3 (a)	a) What is PCB? What are the different states in which a process can be in its life cycle, discuss with the help of state transition diagram?								CO2 & CO3	L1
(b)	Is CPU scheduling necessary? Discuss the five different scheduling criteria used in comparing scheduling mechanisms?							ed [05]	CO2 & CO3	L2
4 (a)	What are virtual machines? Explain the benefits of creating virtual machines?								CO1&CO2	L1
(b)	What are schedulers and different types of schedulers?								CO2 & CO3	
5 (a)	Define IPC. V message passi			methods used	for	logical imp	lementations	of [05]	CO2 & CO3	
(b)	What is produmemory.	cer consum	er problem	? Give a solut	ion t	to the proble	em using shar	ed [05]	CO2 & CO3	L1

USN					

Internal Assessment Test 1 – March 2018

Sub:	OPERATING SYSTEMS Sub Code: 15C	CS64	Branch:	CSE	
Date:	13/03/2018 Duration: 90 min's Max Marks: 50 Sem / Sec:	A & B		OBE	
	Answer any FIVE FULL Questions		MA RKS	СО	RBT
1 (a)	Why is dual mode operation in OS required? Explain.		[04]	CO1&CO2	L4
(b)	Explain the salient features of: i) Distributed OS ii) Real time OS.	[06]	CO1&CO2	L4	
2 (a)	Define an OS? Discuss its role with respect to user and system view po	oints.	[06]	CO1&CO2	L2
(b)	Explain any two types of system calls.	[04]	CO1&CO2	L4	
3 (a)	What is PCB? What are the different states in which a process can be cycle, discuss with the help of state transition diagram?	fe [05]	CO2 & CO3	L1	
(b)	Is CPU scheduling necessary? Discuss the five different scheduling c in comparing scheduling mechanisms?	ed [05]	CO2 & CO3	L2	
4 (a)	What are virtual machines? Explain the benefits of creating virtual machines.	[6]	CO1&CO2	L1	
(b)	What are schedulers and different types of schedulers?	[4]	CO2 & CO3	L1	
5 (a)	Define IPC. What are the different methods used for logical implementation message passing systems?	entations	of [05]	CO2 & CO3	L2
(b)	What is producer consumer problem? Give a solution to the problem umemory.	using share	ed [05]	CO2 & CO3	L1

6 (a)	What is a	[04]	CO2 & CO3	L1					
(b)	Explain di user and k	[06]	CO2 & CO3	L4					
7 (a)	Explain the Simple Str. Microkern	[10]	CO1	L4					
8 (a)	Consider given in m	[10]	CO2 & CO3	L4					
		Processe Arrival Burst Priority s Time Time							
	P1 0 10 3								
		P2	0	1	1				
		P3	3	2	3				
		P4	5	1	4				
		P5	10	5	2				
	,	processes using FCFS,							
	Priority an	1 0							
	each of the c) What ar	e scheduling	g algorithms in ng time of eac	n (a)?		age turnaround time for waiting time for each of			

6 (a)	What is a	thread and e		[04]	CO2 & CO3	L1			
(b)	Explain di user and k	[06]	CO2 & CO3	L4					
7 (a)	Explain the Simple Str. Microkern	[10]	CO1	L4					
8 (a)	Consider given in m		ng set of proc	cesses with th	ne length	of the CPU burst time	[10]	CO2 & CO3	L4
		Processe	Arrival	Burst	Priority				
		s Time Time							
		P1 0 10 3							
		P2	0	1	1				
		P3	3	2	3				
		P4	5	1	4				
		P5	10	5	2				
	a) Draw th	ne Gantt Cha	arts illustratin	g the execution	on of these	processes using FCFS,			
	Priority an								
		age turnaround time for							
		_	g algorithms ir	` '					
	c) What an	re the waitin	g time of eac	h process and	average v	waiting time for each of			
	the schedu	lling algoritl	nms in (a)?						