

USN

Internal Assessment Test 1 – March 2018

Solutions

Sub: Operating Systems Sub Code: 15CS64 Branch: ISE

Date: 13/03/2018 Duration: 90 mins Max Marks: 50 Sem / Sec: VI/ A, B OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) What is an operating system? What are its roles?

An operating system is a program that manages the computer hardware. It also

provides a basis for application programs and acts as an intermediary between the

computer user and the computer hardware.

Roles:

• User’s view: The user's view of the computer varies according to the interface
being used. The goal is to maximize the work that the user is performing. The OS is
designed mostly for ease of use, with some attention paid to performance.
System’s view: From the computer's point of view, the operating system is the

program most intimately involved with the hardware. In this context, we view an

operating system as a resource allocator.

[04] CO1 L1

 (b) What are system calls? With example explain different categories of system calls.

• System calls provide an interface to the services made available by an
operating system.

• These calls are generally available as routines written in C and C++,
although certain low-level tasks (for example, tasks where hardware must
be accessed directly), may need to be written using assembly-language
instructions.

Process control

• end, abort
• load, execute
• create process, terminate process
• get process attributes, set process attributes
• wait for time

[06] CO1 L2

• wait event, signal event
• allocate and free memory

File management

• create file, delete file
• open, close
• read, write, reposition
• get file attributes, set file attributes

Device management

• request device, release device
• read, write, reposition
• get device attributes, set device attributes
• logically attach or detach devices

Information maintenance

 get time or date, set time or date

 get system data, set system data

 get process, file, or device attributes

 set process, file, or device attributes

Communications

 create, delete communication connection

 send, receive messages

 transfer status information
 attach or detach remote devices

2 (a) Explain dual mode operation in OS with a neat block diagram.

• There are two separate modes of operation: user mode and kernel mode

(also called supervisor mode, system mode, or privileged mode).

• A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). With the mode bit, we are

able to distinguish between a task that is executed on behalf of the operating

system and one that is executed on behalf of the user.

• When the computer system is executing on behalf of a user application, the

system is in user mode.

• However, when a user application requests a service from the operating

system (via a system call), it must transition from user to kernel mode to

fulfil the request.

• At system boot time, the hardware starts in kernel mode.

• The operating system is then loaded and starts user applications in user
mode.

• Whenever a trap or interrupt occurs, the hardware switches from user mode

[04] CO1 L2

to kernel mode (that is, changes the state of the mode bit to 0).

• Whenever the operating system gains control of the computer, it is in kernel

mode.

• The system always switches to user mode (by setting the mode bit to 1)
before passing control to a user program.

• The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another.

• The hardware allows privileged instructions to be executed only in kernel mode.

• If an attempt is made to execute a privileged instruction in user mode, the hardware
does not execute the instruction but rather treats it as illegal and traps it to the

operating system.

 (b) With a neat diagram explain the concept of VM. How is dual mode implemented in

VM? Explain its advantages and disadvantages.
• The layered approach is taken to its logical conclusion in the concept of a virtual

machine.

• VMs abstract the hardware of a single computer (the CPU, memory, disk drives,
network interface cards, and so forth) into several different execution environments,

thereby creating the illusion that each separate execution environment is running its

own private computer.

Implementation:

• The virtual-machine software can run in kernel mode, since it is the
operating system. The virtual machine itself can execute in only user mode.

• Virtual Machine has virtual user mode and a virtual kernel mode, both of
which run in a physical user mode. Those actions that cause a transfer from
user mode to kernel mode on a real machine must also cause a transfer

[06] CO1 L2

from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows:
• When a system call, for example, is made by a program running on a virtual

machine in virtual user mode, it will cause a transfer to the virtual-machine
monitor in the real machine.

• When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the
effect of the system call.

• It can then restart the virtual machine, noting that it is now in virtual kernel
mode.

Advantages

• By using CPU scheduling and virtual-memory techniques, an operating system
can create the illusion that a process has its own processor with its own

(virtual) memory.

• The virtual-machine approach does not provide any such additional

functionality, such as system calls and a file system, but rather provides an
interface that is identical to the underlying bare hardware. Each process is

provided with a (virtual) copy of the underlying computer.
Disadvantages:

• Although the virtual-machine concept is useful, it is difficult to implement.

• Much work is required to provide an exact duplicate of the underlying

machine.
• Virtual machines are slower

3 (a) What is the need for multithreaded processes? Indicate the four major categories of

benefits derived from multithreaded programming.
Need for Multithreaded processes:

 In certain situations, a single application may be required to perform several similar

tasks. For example, a web server accepts client requests for web pages, images,

sound, and so forth. If the web server ran as a traditional single-threaded process, it

would be able to service only one client at a time. The amount of time that a client
might have to wait for its request to be serviced could be enormous.

 Process creation is time consuming and resource intensive, as was shown in the

previous chapter. If the new process will perform the same tasks as the existing
process, it is unnecessary to incur all the overhead.

 It is generally more efficient to use one process that contains multiple threads. The

server would create a separate thread that would listen for client requests; when a

request was made, rather than creating another process, the server would create
another thread to service the request.

 Threads also play a vital role in remote procedure call (RPC) systems. RPC servers

are multithreaded. When a server receives a message, it services the message using
a separate thread. This allows the server to service several concurrent requests. E.g.,

Java's RMI.

 Finally, many operating system kernels are now multithreaded; several threads

operate in the kernel, and each thread performs a specific task, such as managing
devices or interrupt handling.

Benefits:

The benefits of multithreaded programming can be broken down into four

major categories:

[04] CO2 L2

1. Responsiveness. Multithreading an interactive application may allow a

program to continue running even if part of it is blocked or is performing a

lengthy operation, thereby increasing responsiveness to the user. For

instance, a multithreaded web browser could still allow user interaction in

one thread while an image was being loaded in another thread.

2. Resource sharing. By default, threads share the memory and the

resources of the process to which they belong. The benefit of sharing code
and data is that it allows an application to have several different threads of

activity within the same address space.

3. Economy. Because threads share resources of the process to which they

belong, it is more economical to create and context-switch threads than in a

process. In Solaris, for example, creating a process is about thirty times

slower than is creating a thread, and context switching is about five times

slower.

4. Utilization of multiprocessor architectures. The benefits of

multithreading can be greatly increased in a multiprocessor architecture,

where threads may be running in parallel on different processors.

 (b) Distinguish between the following pairs of terms:

(i) User vs kernel mode (ii) Process vs Thread (iii) User vs Kernel threads

User mode Kernel Mode

User applications run in user

mode

When user application requests

service from OS it must transition

to kernel mode

After system boots while

starting user applications,

system enters user mode

System boots in kernel mode

Privileged instructions can’t be
run in user mode

Privileged instructions run in

kernel mode

Process Threads

An executing instance of a

program is called a process.

A thread is a subset of the

process.

It has its own copy of the data

segment of the parent process.

It has direct access to the data

segment of its process.

Processes must use inter-

process communication to

communicate with sibling

processes.

Threads can directly

communicate with other

threads of its process.

Processes have considerable

overhead.

Threads have almost no

overhead.

Run in separate memory

spaces.

Run in shared memory spaces.

User-level threads Kernel-level threads

[06] CO2,6 L2

User thread are implemented by

users/application programs.

kernel threads are implemented

by OS.

OS doesn’t recognized user level

threads.

Kernel threads are recognized by

OS.

If one user level thread perform

blocking operation then entire

process will be blocked.

If one kernel thread perform

blocking operation then another

thread can continue execution.

Example : Java thread, POSIX

threads.

Example : Window Solaris.

4 (a) What is a process? Illustrate the process state transition diagram.
A process is a program in execution. Process is an active entity, with a program

counter specifying the next instruction to execute and a set of associated resources.

A program becomes a process when an executable file is loaded into memory.

[04] CO1 L1

 (b) Explain multithreading models.
User threads are supported above the kernel and are managed without kernel

support.
Kernel threads are supported and managed directly by the operating system.

Many-to-One Model

 The many-to-one model maps many user-level threads to one kernel thread.

 Thread management is done by the thread library in user space, so it is efficient; but

the entire process will block if a thread makes a blocking system call.

 Also, because only one thread can access the kernel at a time, multiple threads are
unable to run in parallel on multiprocessors.

 Example: Green threads—a thread library available for Solaris—uses this model, as

does GNU Portable Threads.

[06] CO2 L2

One-to-One Model

 The one-to-one model maps each user thread to a kernel thread.

 It provides more concurrency than the many-to-one model by allowing another thread
to run when a thread makes a blocking system call; it also allows multiple threads to

run in parallel on multiprocessors.

 The only drawback to this model is that creating a user thread requires creating the

corresponding kernel thread.

 Most implementations of this model restrict the number of threads supported by the

system.

 Example: Linux, along with the family of Windows operating systems—including

Windows 95, 98, NT, 2000, and XP implement the one-to-one model.

Many-to-Many Model

 The many-to-many model multiplexes many user-level threads to a smaller or equal

number of kernel threads.

 In Many-to-one model true concurrency is not gained because the kernel can schedule

only one thread at a time.

 The one-to-one model allows for greater concurrency, but the developer has to be

careful not to create too many threads within an application.

 In many-to-many model developers can create as many user threads as necessary, and

the corresponding kernel threads can run in parallel on a multiprocessor.

 When a thread performs a blocking system call, the kernel can schedule another thread

for execution.

 Example: Java Threads on Solaris, Win32 Threads with ThreadFibre package

Two-Level Model

 One popular variation on the many-to-many model still multiplexes many user-level
threads to a smaller or equal number of kernel threads but also allows a user-level

thread to be bound to a kernel thread.

 This variation, sometimes referred to as the two-level model, is supported by operating

systems such as IRIX, HP-UX, and Tru64 UNIX.

5 (a) What is IPC? What are the merits of IPC?

IPC, stands for interprocess communication, is a mechanism where two or more
cooperating processes communicate for sharing data, resources or for

synchronization.
Merits of IPC:

• Information sharing

• Computation speedup

• Modularity
• Convenience

[04] CO1 L1

 (b) Explain direct and indirect communication with respect to message passing.

Direct Communication:

Symmetric direct communication:
• This scheme exhibits symmetry in addressing; that is, both the sender process and the

receiver process must name the other to communicate.

• Each process that wants to communicate must explicitly name the recipient or sender
of the communication.

• In this scheme, the send.0 and receive() primitives are defined as:
o send(P, message)—Send a message to process P.

o receive (Q, message)—Receive a message from process Q

• A communication link in this scheme has the following properties:
o A link is established automatically between every pair of processes that

want to communicate. The processes need to know only each other's

identity to communicate.

[06] CO1 L2

o A link is associated with exactly two processes.

o Between each pair of processes, there exists exactly one link.

Asymmetric direct communication:
• This scheme employs asymmetry in addressing. Here, only the sender names the

recipient; the recipient is not required to name the sender.

• In this scheme, the send() and receive () primitives are defined as follows:

o send(P, message)—Send a message to process P.
o receive(id, message)—-Receive a message from any process; the variable

id is set to the name of the process with which communication has taken

place.

• The disadvantage in both of these schemes (symmetric and asymmetric) is the limited
modularity of the resulting process definitions. Changing the identifier of a process

may necessitate examining all other process definitions.

Indirect Communication:
• With indirect communication, the messages are sent to and received from mailboxes,

or ports.

• A mailbox can be viewed abstractly as an object into which messages can be placed

by processes and from which messages can be removed.

• Each mailbox has a unique identification.

• Two processes can communicate only if the processes have a shared mailbox.

• The sendC) and receive () primitives are defined as follows:
o send(A, message)—Send a message to mailbox A.

o receive(A, message)—Receive a message from mailbox A.

• In this scheme, a communication link has the following properties:

o A link is established between a pair of processes only if both members of

the pair have a shared mailbox.

o A link may be associated with more than two processes.

o Between each pair of communicating processes, there may be a number of

different links, with each link corresponding to one mailbox.

• Example: Suppose that processes P1, P2, and P3 all share mailbox A, Process P1

sends a message to A, while both P2 and P3 execute a receive() from A.

• Which process will receive the message sent by P1 depends on the following
methods we choose:

o Allow a link to be associated with two processes at most.

o Allow at most one process at a time to execute a receive () operation.
o Allow the system to select arbitrarily which process will receive the

message (that is, either P2 or P3, but not both, will receive the message).

• A mailbox may be owned either by a process or by the operating system.

• If the mailbox is owned by a process, then we distinguish between the owner and the
user. (who can only send messages to the mailbox). Since each mailbox has a unique

owner, there can be no confusion about who should receive a message sent to this

mailbox.

• The operating system then must provide a mechanism that allows a process to do the
following:

o Create a new mailbox.

o Send and receive messages through the mailbox.
o Delete a mailbox.

• When a process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the mailbox

no longer exists.

6 (a) List the services provided by an OS that are designed for:
(i) user convenience (ii) efficient operation of the system.

[04] CO1 L1

(i) User convenience

• User interface (UI).

• Program execution

• I/O operations

• File-system manipulation

• Communications

• Error detection

(ii) Efficient operation of system

Resource allocation

Accounting

Protection and security

 (b) Consider the following set of processes with arrival time.

Processes Burst Time (ms) Arrival time (ms)

P1 10 0

P2 29 1

P3 3 2

P4 7 3

Draw Gantt chart using preemptive SJF, and RR with time slice of 10 ms quantum.

Calculate average WT and TAT for each.

Preemptive SJF: (time in ms)

P1=2 P3=3 P4=7 P1=8 P2=29

0 2 5 12 20 49

Process WT (ms) TAT (ms)

P1 12-2=10 20

P2 20-1=19 49-1=48

P3 2-2=0 5-2=3

P4 5-3=2 12-3=9

Avg 31/4=7.75 80/4=20

RR with time slice 10 ms. (time in ms)

P1=10 P2=10 P3=3 P4=7 P2=10 P2=9

0 10 20 23 30 40 49

Process WT (ms) TAT (ms)

P1 0 10

P2 20-1=19 49-1=48

P3 20-2=18 23-2=21

P4 23-3=20 30-3=27

Avg 57/4=14.25 96/4=26.5

[06] CO2,6 L3

7 (a) What is a PCB? Illustrate the different components of a PCB.

Each process is represented in the operating system by a process control block

(PCB)—also called a task control block. PCB contains many pieces of

information associated with a specific process.

[04] CO1 L1

 (b) For the processes listed below, draw Gantt chart using preemptive and non-

preemptive priority scheduling. Calculate the average WT and TAT.

Note: In this case, A larger priority number has higher priority.

Processes Arrival time (ms) Burst Time (ms) Priority

P1 0 6 4

P2 3 5 2

P3 3 3 6

P4 5 5 3

Non-preemptive Priority (time in ms)

P1=6 P3=3 P4=5 P2=5

0 6 9 14 19

Process WT (ms) TAT (ms)

P1 0 6

P2 14-3=11 19-3=16

P3 6-3=3 9-3=6

P4 9-5=4 14-5=11

Avg 18/4=4.5 37/4=9.25

Preemptive Priority (time in ms)

P1=3 P3=3 P1=3 P4=5 P2=5

0 3 6 9 14 19

Process WT (ms) TAT (ms)

P1 3 9

P2 14-3=11 19-3=16

P3 0 6-3=3

P4 9-5=4 14-5=11

Avg 18/4=4.5 37/4=9.25

[06] CO2,6 L3

8 (a) Why is it important for scheduler to distinguish CPU and I/O bound programs?
• It is important that the long-term scheduler select a good process mix of I/O-bound

and CPU-bound processes.

• In general, most processes can be described as either I/O bound or CPU bound.

[04] CO1 L2

• An I/O-bound process is one that spends more of its time doing I/O than it spends
doing computations.

• A CPU-bound process, in contrast, generates I/O requests infrequently, using more
of its time doing computations.

• If all processes are I/O bound, the ready queue will almost always be empty, and
the short-term scheduler will have little to do.

• If all processes are CPU bound, the I/O waiting queue will almost always be empty,
devices will go unused, and again the system will be unbalanced.

• The system with the best performance will thus have a combination of CPU-bound
and I/O-bound processes.

 (b) Write a multithreaded program using pthread library to perform multiplication of

two vectors. [C[i]=A[i]*B[i]; for all 0 ≤ i < N (where N is a positive integer)].

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

int i=0,mul=0; /* this data is shared by the thread(s) */

int A[100], B[100], C[100];

void *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{

 pthread_t tid1,tid2; /* the thread identifier */

 pthread_attr_t attr; /* set of thread attributes */

 int N,j;

 if (argc != 2) {

 fprintf(stderr,"usage: a.out <integer value>\n");

 return -1;

 }

 N=atoi(argv[1]);

 if (atoi(argv[1]) < 0) {

 fprintf(stderr,"%d must be >= 0\n",N);

 return -1;

 }

 printf("Enter the values for Vector A[]: ");

 for (j=0;j<N;j++)

 scanf("%d",&A[j]);

 printf("Enter the values for Vector B[]: ");

 for (j=0;j<N;j++)

 scanf("%d",&B[j]);

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* create the thread */

 pthread_create(&tid1,&attr,runner,argv[1]);

 pthread_create(&tid2,&attr,runner,argv[1]);

 /* wait for the thread to exit */

 pthread_join (tid1, NULL) ;

 pthread_join (tid2, NULL) ;

 printf("\nProduct Vector is: ");

 for (j=0;j<N;j++)

 printf("%d ",C[j]);

 printf("\n");

[06] CO2 L3

}

/* The thread will begin control in this function */

void *runner(void *param)

{

 int upper = atoi(param);

 pthread_t my_tid;

 my_tid = pthread_self();

 printf("Hi there! This is Thread %ld\n",my_tid);

 for (;i <= upper; i++)

 C[i]=A[i]*B[i];

 pthread_exit(0);

}

Output:

$./a.out 5

Enter the values for Vector A[]: 2 2 2 2 2

Enter the values for Vector B[]: 3 3 3 3 3

Hi there! This is Thread 6432

Hi there! This is Thread 3465

Product Vector is: 6 6 6 6 6

END

