
1 | P a g e

1. (a) Why do we need to test software? Describe what a typical test case information should

include.

[05]

Scheme:

Testing definition – [02]

Solution:

There are two main reasons: to make a judgment about quality or acceptability and to discover problems.

We test because we know that we are fallible (capable of making mistakes or being wrong, capable of

making mistakes or being wrong) — this is especially true in the domain of software and software

controlled systems.

Test Case structure [03]

Solution:

Test Cases

The essence of software testing is to determine a set of test cases for the item being tested. Before going on,

we need to clarify what information should be in a test case.

The most obvious information is

Inputs: Inputs are really of two types:

1. Pre-conditions (circumstances that held prior to testing case execution)

2. Actual inputs that were identified by some testing method.

Outputs: again, there are two types:

1. Postconditions

2. Actual outputs.

Test case ID

Purpose

Preconditions

Inputs

Expected Outputs

Post Conditions

Execution History

Date Result Version Run By

Test Case template

The output portion of a test case is frequently overlooked because this is often the hard part. Suppose, for

example, you were testing software that determined an optimal route for an aircraft, given certain FAA air

Internal Assessment Test 1 – March 2018

Scheme and Solutions

Sub: Software Testing Sub Code: 10CS842 Branch: CSE

Date: 14-03-2018 Duration: 90 min’s Max Marks: 50 Sem / Sec: CSE(8A,B & C) OBE

2 | P a g e

corridor constraints and the weather data for a flight day. How would you know what the optimal route

really is?

Responses to this problem.

 The academic response is to postulate the existence of an oracle, who “knows all the answers”.

 Industrial response to this problem is known as Reference Testing, where the system is tested in the

presence of expert users, and these experts make judgments as to whether or not outputs of an

executed set of test case inputs are acceptable.

The act of testing entails establishing the necessary pre-conditions, providing the test case inputs,

observing the outputs, and then comparing these with the expected outputs to determine whether or not

the test passed.

 (b) Define Error, fault, failure, Incident, Test, and Test case. Distinguish between bug and an

Error.

[05]

Scheme:

Error, Fault, Failure, Incident, Test, and Test case [1/2 x 6 = 3]

Differentiation: [02]

Solution:

Error: People make errors. A good synonym is “mistake”. When people make mistakes while coding, we

call these mistakes “bugs”.

Errors tend to propagate; a requirements error may be magnified during design and amplified still more

during coding.

Type:

1. Error of Commission

2. Error of Omission

Fault: A fault is the result of an error. It is more precise to say that a fault is the representation of an error,

where representation is the mode of expression, such as narrative text, data flow diagrams, hierarchy charts,

source code, and so on. “Defect” is a good synonym for a fault; so is “bug”. Faults can be elusive.

The fault of Omission: the Resulting fault is that something is missing that should be present in the

representation or when we fail to enter the correct information. Faults of omission are more difficult to detect

and resolve.

The fault of commission: occurs when we enter something into a representation that is incorrect.

Incident: An incident is a symptom(s) associated with a failure that alerts the user to the occurrence of a

failure.

Test: A test is an act of exercising software with test cases. Testing is obviously concerned with errors,

faults, failures, and incidents. There are two distinct goals of a test: either to find failures or to demonstrate

correct execution.

Test Case: A test case has an identity, and is associated with a program behavior. A test case has a set of

inputs, a set of expected outputs.

2. (a) Briefly explain Testing using Venn Diagram. [05]

3 | P a g e

Scheme:

Diagram: [02]

Venn diagram explanation [03]

Solution:

Testing is fundamentally concerned with behavior, and behavior is orthogonal to the structural view

common to software (and system) developers.

A quick differentiation is that the structural view focuses on “what it is” and the behavioral view considers

“what it does”. One of the continuing sources of difficulty for testers is that the base documents are usually

written by and for developers, and therefore the emphasis is on structural, rather than behavioral,

information. In this section, we develop a simple Venn diagram which clarifies several nagging questions

about testing.

The figure shows the relationship between our universe of discourse and the specified and programmed

behaviors.

Of all the possible program behaviors, the specified ones are in the circle labeled S; and all those behaviors

actually programmed (note the slight difference between P and U, the Universe) are in P. With this diagram,

we can see more clearly the problems that confront a tester.

What if there are specified behaviors that have not been programmed? In our earlier terminology, these

are faults of omission.

Similarly, what if there are programmed (implemented) behaviors that have not been specified? These

correspond to faults of the commission, and to errors which occurred after the specification was complete.

The intersection of S and P (the football-shaped region) is the “correct” portion, that is behaviors that

are both specified and implemented.

Specified, Implemented, and Tested Behaviors

4 | P a g e

S of specified behaviors, P of programmed behaviors and the set T of Testing Behavior.

We are already at a point where we can see some possibilities for testing as a craft: what can a tester do

to make the region where these sets all intersect (region 1) be as large as possible? Another way to

get at this is to ask how the test cases in the set T are identified. The short answer is that test cases

are identified by a testing method. This Framework gives u s a w a y t o compare the effectiveness of

diverse testing methods.

 (b) Explain: i) Currency converter ii) Saturn wind shield wiper controller. [05]

Scheme:

Currency Converter [2.5]

Venn diagram explanation [2.5]

3. How to Identify Test Cases? Explain Functional Testing and Structural Testing and how they
differ from each other.

[10]

Scheme:

Test Case Identification basics [02]

Explain Functional and Structural Testing [4+4=8]

Solution:

Identifying Test Cases

There are two fundamental approaches to identifying test cases

Functional Testing: Functional testing is based on the view that any program can be considered to

be a function that maps values from its input domain to values in its output range. This notion is

commonly used in engineering when systems are considered to be “black boxes”.

This leads to the term Black Box Testing, in which the content(implementation) of a black box is not

known, and the function of the black box is understood completely in terms of its inputs and outputs.

With the functional approach to test case identification, the only information that is used is the specification

of the software.

There are two distinct advantages of functional test cases:

1. They are independent of how the software is implemented, so if the implementation changes, the

test cases are still useful,

2. Test case development can occur in parallel with the implementation, thereby reducing overall

project development interval.

Disadvantages:

1. There can be significant redundancies among test cases, and this is compounded by the possibility

of gaps of untested software.

5 | P a g e

The figure shows the results of test cases identified by two functional methods. Method A

identifies a larger set of test cases than does Method B. Notice that, for both methods, the set of

test cases is completely contained within the set of specified behavior.

2. Since functional methods are based on the specified behavior, it is hard to imagine these methods

identifying behaviors that are not specified.

1.4.2 Structural Testing

Structural testing is the other fundamental approach to test case identification. To contrast it with

Functional Testing, it is sometimes called White Box (or even Clear Box) Testing.

The clear box metaphor is probably more appropriate because the essential difference is that the

implementation (of the Black Box) is known and used to identify test cases. Being able to “see inside”

the black box allows the tester to identify test cases based on how the function is actually implemented.

Structural Testing has been the subject of some fairly strong theory. With these concepts, the tester can

rigorously describe exactly what is being tested. Because of its strong theoretical basis, structural testing

lends itself to the definition and use of test coverage metrics.

Notice that for both methods, the set of test cases is completely contained within the set of programmed

behavior. Because structural methods are based on the program.

The Functional Versus Structural Debate Given two fundamentally different approaches to test case
identification, the natural question is which is better?

Conclusion: Neither approach alone is sufficient. Both approaches are needed.

4. (a) What is boundary Value Analysis? Explain the Input domain of a function variables. [06]

Scheme:

6 | P a g e

Definition: Boundary Value testing [02]

BVT Input domain explanation [04]

Solution:

 Boundary value analysis is the best known functional testing technique.

 The objective of functional testing is to use knowledge of the functional nature of a program to identify

test cases.

 Functional testing has focused on the input domain, but it is a good supplement to consider test cases

based on the range as well.

 Boundary value analysis focuses on the boundary of the input space to identify test cases.

 The logic behind boundary value analysis is that errors tend to occur near the extreme values of an

input variable.

 Programs written in non-strongly typed languages are more appropriate candidates for boundary value

testing.

Input domain of function of variables

In our discussion we will assume a program P accepting two inputs y1 and y2 such that:

a ≤ y1 ≤ b and c ≤ y2 ≤ d

Consider the following function:

dycbyayyf 
2121

, where),,(

Note: Boundary inequalities of n input variables define an n-dimensional input space:

a b

c

d

y2

y1

The basic idea in boundary value analysis is to select input variable values at their:

– Minimum (Min)

– Just above the minimum (Min+1)

– A nominal value (Nom)

– Just below the maximum (Max-1)

– Maximum (Max)

7 | P a g e

Boundary Value Analysis (BVA) for Program P

T = { <y1nom, y2min>, <y1nom, y2min+>, <y1nom, y2nom>, <y1nom, y2max->,

<y1nom, y2max+>, <y1min, y2nom>, < 1nin+, y2nom>, <y1max-, y2nom>,

<y1max, y2nom> }

BVA for triangle problem is taken as 3 variable are in the range such that 1<= {a, b, c} <= 200.

Hence min = 1, min+1 = 2, nom = 100 (any value between 1 to 200) max-1 = 199, and max = 200. Below

table shows the resultant boundary value test cases.

Table 1 Boundary Value Analysis Test Cases Case

 a b c Expected Output

1 100 100 1 Isoscele

s
2 100 100 2 Isoscele

s

3 100 100 100 Equilater

al
4 100 100 199 Isoscele

s
5 100 100 200 Not a Triangle

6 100 1 100 Isoscele

s
7 100 2 100 Isoscele

s

 (b) Write a short note on Limitations of Boundary value Analysis. [04]

Scheme:

One Limitation x 01 = [04]

Solution:

 Boundary value analysis works well when the program to be tested is a function of several independent

variables that represent bounded physical quantities.

8 | P a g e

 A quick look at the boundary value analysis test cases for NextDate shows them to be inadequate. There

is very little stress on February and on leap years, for example. The real problem here is that there are

interesting dependencies among the month, day, and year variables.

 Boundary value analysis presumes the variables to be truly independent. Even so, boundary value analysis

happens to catch end-of-month and end-of-year faults. Boundary value analysis test cases are derived

from the extrema of bounded, independent variables that refer to physical quantities, with no

consideration of the nature of the function, nor of the semantic meaning of the variables.

We see boundary value analysis test cases to be rudimentary, in the sense that they are obtained with very

little insight and imagination. As with so many things, you get what you pay for.

The physical quantity criterion is equally important. When a variable refers to a physical quantity, such as

temperature, pressure, air speed, angle of attack, load, and so forth, physical boundaries can be extremely

important. (In an interesting example of this, Sky Harbor International Airport in Phoenix had to close on

June 26, 1992 because the air temperature was 122 °F. Aircraft pilots were unable to make certain instrument

settings before take-off: the instruments could only accept a maximum air temperature of 120 °F.) In another

case, a medical analysis system uses stepper motors to position a carousel of samples to be analyzed. It turns

out that the mechanics of moving the carousel back to the starting cell often causes the robot arm to miss the

first cell. As an example of logical (versus physical) variables, we might look at PINs or telephone numbers.

It’s hard to imagine what faults might be revealed by PINs of 0000, 0001, 5000, 9998, and 9999.

5. What is Equivalence Classes? Demonstrate the weak & strong Normal equivalence class

Testing with an example.

[10]

Scheme:

Definition: Equivalence Class [2]

Weak Normal equivalence class [4]

Strong Normal equivalence class [4]

Solution:

 Equivalence Classes: Important aspect of equivalence classes is that they form a partition of a set, where

partition refers to a collection of mutually disjoint subsets whose union is the entire set.

 Equivalence Classes has two important implications for testing: the fact that the entire set is represented

provides a form of completeness, and the disjointness assures a form of non-redundancy. Because the

subsets are determined by an equivalence relation, the elements of a subset have something in common.

 The idea of equivalence class testing is to identify test cases by using one element from each equivalence

class.

 If the equivalence classes are chosen wisely, this greatly reduces the potential redundancy among test

cases. In the Triangle Problem, for example, we would certainly have a test case for an equilateral triangle,

and we might pick the triple (5, 5, 5) as inputs for a test case. If we did this, we would not expect to learn

much from test cases such as (6, 6, 6) and (100, 100, 100). Our intuition tells us that these would be

“treated the same” as the first test case, thus they would be redundant.

 The key (and the craft!) of equivalence class testing is the choice of the equivalence relation that

determines the classes.

 To understand equivalence class, we need to make a distinction between weak and strong equivalence

class testing which can be later compared with the traditional form of equivalence class testing.

 Suppose our program is a function of three variables, a, b, and c, and the input domain consists of sets A,

B, and C. Now, suppose we choose an “appropriate” equivalence relation, which induces the following

partition:

9 | P a g e

Finally, we denote elements of the partitions as follows:

Weak Equivalence Class Testing

Note: Read 2 variable example to understand in page no. 90 & 91

With the notation as given above, weak equivalence class testing is accomplished by using one variable from

each equivalence class in a test case. For the above example, we would end up with the following weak

equivalence class test cases:

Test Case a b c

WE1 a1 b1 c1

WE2 a2 b2 c2

WE3 a3 b3 c3

WE4 a1 b4 c2

This set of test cases uses one value from each equivalence class. We identify these in a systematic way,

hence the apparent pattern. In fact, we will always have the same number of weak equivalence class test

cases as there are classes in the partition with the largest number of subsets.

Strong Equivalence Class Testing

Strong equivalence class testing is based on the Cartesian product of the partition subsets. Continuing with

this example, the Cartesian product A x B x C will have 3 × 4 × 2 = 24 elements, resulting in the test cases

in the table below:

Test Case a b c

SE1 a1 b1 c1

SE2 a1 b1 c2

SE3 a1 b2 c1

SE4 a1 b2 c2

SE5 a1 b3 c1

SE6 a1 b3 c2

10 | P a g e

SE7 a1 b4 c1

SE8 a1 b4 c2

SE9 a2 b1 c1

SE10 a2 b1 c2

SE11 a2 b2 c2

SE12 a2 b2 c2

SE13 a2 b3 c1

SE14 a2 b3 c2

SE15 a2 b4 c1

SE16 a2 b4 c2

SE17 a3 b1 c1

SE18 a3 b1 c2

SE19 a3 b2 c1

SE20 a3 b2 c2

SE21 a3 b3 c1

SE22 a3 b3 c2

SE23 a3 b4 c1

SE24 a3 b4 c2

Notice the similarity between the pattern of these test cases and the construction of a truth table in

propositional logic. The Cartesian product guarantees that we have a notion of “completeness” in two senses:

we cover all the equivalence classes, and we have one of each possible combination of inputs.

As we shall see from our continuing examples, the key to “good” equivalence class testing is the selection of

the equivalence relation. Watch for the notion of inputs being “treated the same”. Most of the time,

equivalence class testing defines classes of the input domain. There is no reason why we could not define

equivalence relations on the output range of the program function being tested, in fact, this is the simplest

approach for the Triangle Problem.

6. Explain decision table structure and how to build it. Demonstrate decision table for the

triangle problem with appropriate conditions and actions.

[10]

Scheme:

Definition: Decision Table [2]

Construction [3]

11 | P a g e

Triangle problem solving [5]

Solution:

Decision tables are a precise yet compact way to model complicated logic. Decision tables, like if-then-else

and switch-case statements, associate conditions with actions to perform.

Unlike the control structures found in traditional programming languages, decision tables can associate many

independent conditions with several actions in an elegant way.

• Decision tables make it easier to observe that all possible conditions are accounted for.

• Decision tables can be used for:

– Specifying complex program logic

– Generating test cases (Also known as logic-based testing)

– Logic-based testing is considered as:

– structural testing when applied to structure (i.e. control flow graph of an implementation).

– functional testing when applied to a specification.

Decision Tables – Structure

Conditions - (Condition stub) Condition Alternatives – (Condition Entry)

Actions – (Action Stub) Action Entries

Each condition corresponds to a variable, relation or predicate

 Possible values for conditions are listed among the condition alternatives

• Boolean values (True / False) – Limited Entry Decision Tables

• Several values – Extended Entry Decision Tables

• Don’t care value

 Each action is a procedure or operation to perform

 The entries specify whether (or in what order) the action is to be performed.

Decision Table Development Methodology

1. Determine conditions and values

2. Determine maximum number of rules

3. Determine actions

4. Encode possible rules

5. Encode the appropriate actions for each rule

6. Verify the policy

7. Simplify the rules (reduce if possible the number of columns)

Decision Table for the Triangle Problem

Conditions

C1: a < b+c? F T T T T T T T T T T

C2: b < a+c? - F T T T T T T T T T

12 | P a g e

C3: c < a+b? - - F T T T T T T T T

C4: a=b? - - - T T T T F F F F

C5: a=c? - - - T T F F T T F F

C6: b=c? - - - T F T F T F T F

Actions How many Xs? 11

A1: Not a Triangle X X X

A2: Scalene

X

A3: Isosceles

X

X X

A4: Equilateral

X

A5: Impossible

X X

X

