
1. Explain the role of a Spinner and its adapters?

(Explanation-2.5+steps for creation-2.5)

The Spinner view is an input control that provides you a drop-down list to select an item from a

set of items. Generally, it shows a default value but you can select a new one from the drop-

down list. The Spinner view needs a list of items to be displayed from an array of strings. You

can do this by initializing a string array in the Java code or you can save the array of strings as a

resource in the XML file. Generally, an Adapter class object provides the values to the drop

down list of a Spinner.

Implementing a spinner

1. Create Spinner UI element in the XML layout

2. Define spinner choices in an array

3. Create Spinner and set onItemSelectedListener

4. Create an adapter with default spinner layouts

5. Attach the adapter to the spinner

6. Implement onItemSelectedListener method

1.b How to create Alert Dialog?

(Explanation-2.5+steps for creation-2.5)

Android has several types of dialogs.. Generally, dialogs are used where some decision or confirmation is

to taken before proceeding ahead. A dialog box can be a date picker window, time picker window, a

window showing the progress bar, a window asking for the confirmation with “Yes” and “No” buttons,

etc. A Dialog is small window that prompts the user to a decision or enter additional information. Some

of the dialogs are as follows:

1. Alert Dialog: It is a dialog box which is used to intimate the user to take the sudden action. Generally,
it can has a title, up to three buttons, a custom layout, or a list of selectable items.

2. Date Picker Dialog / Time Picker Dialog: These dialog shows the DatePicker / TimePicker views as a
dialog. User can select the appropriate date / time from the view as choose and pick method.

Alerts are urgent interruptions, requiring acknowledgement, that inform the user about a situation as it
occurs, or an action before it occurs (as in discarding a draft). You can provide buttons in an alert to
make a decision. For example, an alert dialog might require the user to click Continue after reading it, or

https://developer.android.com/reference/android/widget/AdapterView.html

give the user a choice to agree with an action by clicking a positive button (such as OK or Accept), or to
disagree by clicking a negative button (such as Cancel).

Use the AlertDialog subclass of the Dialog class to show a standard dialog for an alert. The AlertDialog
class allows you to build a variety of dialog designs. An alert dialog can have the following regions Title:
A title is optional. Most alerts don’t need titles. If you can summarize a decision in a sentence or two by
either asking a question (such as, “Discard draft?”) or making a statement related to the action buttons
(such as, “Click OK to continue”), don’t bother with a title. Use a title if the situation is high-risk, such as
the potential loss of connectivity, and the content area is occupied by a detailed message, a list, or
custom layout.

1. Content area: The content area can display a message, a list, or other custom layout.

2. Action buttons: You should use no more than three action buttons in a dialog, and most have
only two.

In order to make an alert dialog, you need to make an object of AlertDialogBuilder which an inner class

of AlertDialog. Its syntax is given below

AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(this);

Now you have to set the positive (yes) or negative (no) button using the object of the AlertDialogBuilder

class. Its syntax is

alertDialogBuilder.setPositiveButton(

 "OK", newDialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {

 // User clicked OK button.

 }

});

2.What are the different Screen navigation mechanisms?

2forms-+explanation-8, diagram+hierarchical-2

 There are two forms of navigation

Temporal or back navigation

 provided by the device's back button

https://developer.android.com/reference/android/app/AlertDialog.html
https://developer.android.com/reference/android/app/Dialog.html

 controlled by the Android system's back stack

Ancestral or up navigation

 provided by the app's action bar

 controlled by defining parent-child relationships between activities in the Android manifest

1. Historys starts from Launcher

2. User clicks the Back button to navigate to the previous screens in reverse order –It will call

finish() to finish current activity and stack next entry loading

3.Android system manages the back stack and Back button by overriding onBackPressed() method.

 public void onBackPressed() {

 // Add the Back key handler here.

 return;

}

Hierarchical navigation patterns include

 Parent screen—Screen that enables navigation down to child screens, such as home screen and

main activity

 Collection sibling—Screen enabling navigation to a collection of child screens, such as a list of

headlines

 Section sibling—Screen with content, such as a story

The different types of Hierarchical navigation is

1. Descendant navigation

a. Down from a parent screen to one of its children

Eg:From a list of headlines to a story summary to a story

2. Ancestral navigation

a. Up from a child or sibling screen to its parent

b. Declare activity’s parent in Android manifest

<activity android:name=".OrderActivity"

 android:label="@string/title_activity_order"

 android:parentActivityName="com.example.android.

 optionsmenuorderactivity.MainActivity">

 <meta-data

 android:name="android.support.PARENT_ACTIVITY"

 android:value=".MainActivity"/>

</activity>

Eg.From a story summary back to the headlines

3. Lateral navigation

a. From one sibling to another sibling

b. From a list of stories to a list in a different tab

c. Swiping between tabbed views

Benefits of using tabs and swipes

 A single, initially-selected tab—users have access to content without further navigation

 Navigate between related screens without visiting parent

3.a.What are the different Recycler components?(6 components-5)

 Data

 RecyclerView scrolling list for list items—RecyclerView

 Layout for one item of data—XML file

 Layout manager handles the organization of UI components in a view—

Recyclerview.LayoutManager

 Adapter connects data to the RecyclerView—RecyclerView.Adapter

 View holder has view information for displaying one item—RecyclerView.ViewHolder

layout manager

 All view groups have layout managers

 Positions item views inside a RecyclerView.

 Reuses item views that are no longer visible to the user

 Built-in layout managers include LinearLayoutManager, GridLayoutManager, and

StaggeredGridLayoutManager

 For RecyclerView, extend RecyclerView.LayoutManager

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/.../RecyclerView.LayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html
https://developer.android.com/.../RecyclerView.ViewHolder.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/LinearLayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/GridLayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/StaggeredGridLayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.LayoutManager.html

What is an adapter?
 Helps incompatible interfaces work together, for

example, takes data from a database Cursor and puts

them as strings into a view

 Intermediary between data and view

 Manages creating, updating, adding, deleting item

views as the underlying data changes

 extend RecyclerView.Adapter

9

What is a view holder?
 Used by the adapter to prepare one view with data for

one list item

 Layout specified in an XML resource file

 Can have clickable elements

 Is placed by the layout manager

 RecyclerView.ViewHolder

10

3.b.Drawable objects(any 5 components-5 marks)

 Bitmap: the simplest Drawable, a PNG or JPEG image.

 Nine Patch: an extension to the PNG format allows it to specify information about how to stretch
it and place things inside of it.

 Vector: a drawable defined in an XML file as a set of points, lines, and curves along with its
associated color information. This type of drawable can be scaled without loss of display quality.

 Shape: contains simple drawing commands instead of a raw bitmap, allowing it to resize better in
some cases.

 Layers: a compound drawable, which draws multiple underlying drawables on top of each other.

 States: a compound drawable that selects one of a set of drawables based on its state.

 Levels: a compound drawable that selects one of a set of drawables based on its level.

 Scale: a compound drawable with a single child drawable, whose overall size is modified based
on the current level.

4.a.Explain about AsyncTask and AsyncTaskLoader?

 (Asynctask-3.5+ AsyncTaskLoader-3.5+limitations-3)

 Hardware updates screen every 16 milliseconds

 UI thread(main Thread) has 16 ms to do all its work

But there are operations which will take more time to finish

Eg;

1. Network operations

2. Long calculations

3. Downloading/uploading files

4. Processing images

5. Loading data etc

15

Main Thread (UI Thread)

Worker Thread

doInBackground()

onPostExecute()

publishProgress()

onProgressUpdate()onPreExecute()

 doInBackground()—runs on a background thread

○ All the work to happen in the background

 onPostExecute()—runs on main thread when work done

○ Process results

○ Publish results to the UI

 onPreExecute()

○ Runs on the main thread

○ Sets up the task

● onProgressUpdate()

○ Runs on the main thread

○ receives calls from publishProgress() from background thread

1. Subclass AsyncTask

2. Provide data type sent to doInBackground()

3. Provide data type of progress units for

onProgressUpdate()

4. Provide data type of result for onPostExecute()

private class MyAsyncTask

extends AsyncTask<URL, Integer, Bitmap> {...}
16

private class MyAsyncTask

extends AsyncTask<String, Integer, Bitmap>

{...}

ackground()doInBakground(

 String—could be query, URI for filename

 Integer—percentage completed, steps done

 Bitmap—an image to be displayed
 Use Void if no data passed 17

onPostExecute()

doInBackground()
onProgressUpdate()

31

LoaderManager

AsyncTaskLoader AsyncTask WorkToDo

Request

Work

Receive

Result

Activity

doInBackground()

onPostExecute()
loadInBackground()
onLoadFinished()

32

 Creates and starts a loader, or reuses an

existing one, including its data

 Use restartLoader() to clear data in existing

loader

 getLoaderManager().initLoader(Id, args, callback);

getLoaderManager().initLoader(0, null, this);

getSupportLoaderManager().initLoader(0, null, this);

29

When restartLoader() or initLoader() is called, the

LoaderManager invokes the onStartLoading() callback

 Check for cached data

 Start observing the data source (if needed)

 Call forceLoad() to load the data if there are changes

or no cached data

protected void onStartLoading() { forceLoad(); }

36

 onCreateLoader() — Create and return a new Loader

for the given ID

 onLoadFinished() — Called when a previously

created loader has finished its load

 onLoaderReset() — Called when a previously

created loader is being reset making its data

unavailable

37

.What are the limitations of AsyncTask?

 When device configuration changes, Activity is destroyed

 AsyncTask cannot connect to Activity anymore

 New AsyncTask created for every config change

 Old AsyncTasks stay around

 App may run out of memory or crash

6. Explain about Broadcast intents and Broadcast receivers?

(broadcast intent-5+receiver-5)

Broadcast Receivers simply respond to broadcast messages from other applications or from the
system itself. These messages are sometime called events or intents. For example, applications can

also initiate broadcasts to let other applications know that some data has been downloaded to the

device and is available for them to use, so this is broadcast receiver who will intercept this
communication and will initiate appropriate action.

There are following two important steps to make BroadcastReceiver works

for the system broadcasted intents −

 Creating the Broadcast Receiver.

 Registering Broadcast Receiver

Creating the Broadcast Receiver

A broadcast receiver is implemented as a subclass of BroadcastReceiverclass and

overriding the onReceive() method where each message is received as a Intent object

parameter.

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Toast.makeText(context, "Intent Detected.", Toast.LENGTH_LONG).show();

 }

}

 Deliver any custom intent as a broadcast
 sendBroadcast() method—asynchronous
 sendOrderedBroadcast()—synchronously
○ android.example.com.CUSTOM_ACTION

6

Custom broadcasts

Send custom broadcasts

Intent customBroadcastIntent = new Intent(ACTION_CUSTOM_BROADCAST);

LocalBroadcastManager.getInstance(this).sendBroadcast(customBroadcastIntent);

18

Registering Broadcast Receiver

An application listens for specific broadcast intents by registering a broadcast receiver

in AndroidManifest.xml file. Consider we are going to register MyReceiver for system

generated event ACTION_BOOT_COMPLETED which is fired by the system once the Android

system has completed the boot process.

 Statically, in AndroidManifest

 Dynamically, with registerReceiver()

 <receiver> element inside <application>

 <intent-filter> registers receiver for specific intents

<receiver
android:name=".CustomReceiver"
android:enabled="true" >

<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent-filter>
</receiver>

12

Register in Android Manifest

 In onCreate() or onResume()

 Use registerReceiver() and pass in the intent filter

 Must unregister in onDestroy() or onPause()

registerReceiver(mReceiver, mIntentFilter)

unregisterReceiver(mReceiver)

14

Register dynamically

6.What is a service? Explain Service lifecycle?

A service is a component that runs in the background to perform long-running

operations without needing to interact with the user and it works even if application
is destroyed. A service can essentially take two states –

Sr.No. State & Description

1 Started
A service is started when an application component, such as an activity, starts it by

calling startService(). Once started, a service can run in the background indefinitely,

even if the component that started it is destroyed.

2 Bound
A service is bound when an application component binds to it by

calling bindService(). A bound service offers a client-server interface that allows

components to interact with the service, send requests, get results, and even do so
across processes with interprocess communication (IPC).

A service has life cycle callback methods that you can implement to monitor changes in the service's

state and you can perform work at the appropriate stage. The following diagram on the left shows the

life cycle when the service is created with startService() and the diagram on the right shows the life
cycle when the service is created with bindService():

6

 Started with an Intent
 Can stay running when user switches

applications
 Lifecycle—which you must manage
 Other apps can use the service—manage

permissions
 Runs in the main thread of its hosting process

 A started service must manage its own lifecycle

 If not stopped, will keep running and consuming resources

 The service must stop itself by calling stopSelf()

 Another component can stop it by calling stopService()

 Bound service is destroyed when all clients unbound

 IntentService is destroyed after onHandleIntent() returns

11

7.What is a notification? How can you create a notification? How can you clear a notification?

(definition-2.5+creation(build+notify+register)-6.5-clear-1)

A notification is a message you can display to the user outside of your application's normal UI. When

you tell the system to issue a notification, it first appears as an icon in the notification area. To see the

details of the notification, the user opens the notification drawer. Both the notification area and the

notification drawer are system-controlled areas that the user can view at any time.

4

Message displayed to user outside regular app UI

 Small icon

 Title

 Detail text

NotificationCompat.Builder

 Specifies UI and actions

 NotificationCompat.Builder.build() creates the

Notification

NotificationManager / NotificationManagerCompat

 NotificationManager.notify() issues the notification

7

Step 1 - Create Notification Builder

As a first step is to create a notification builder

using NotificationCompat.Builder.build(). You will use Notification Builder to

set various Notification properties like its small and large icons, title, priority

etc.

 Define notification and set

required attributes
NotificationCompat.Builder mNotifyBuilder = new

NotificationCompat.Builder(this);

Step 2 - Setting Notification Properties

Once you have Builder object, you can set its Notification properties using

Builder object as per your requirement. But this is mandatory to set at least

following −

 A small icon, set by setSmallIcon()

 A title, set by setContentTitle()

 Detail text, set by setContentText()

You have plenty of optional properties which you can set for your

notification. To learn more about them, see the reference documentation for

NotificationCompat.Builder.

mNotifyBuilder.setContentTitle("You've been notified!");

mNotifyBuilder.setContentText("This is your notification

text.");

mNotifyBuilder.setSmallIcon(R.drawable.ic_android_black_24dp

);

Notification myNotification =mNotifyBuilder.build();`

Step 3 - Attach Actions

This is an optional part and required if you want to attach an action with the

notification. An action allows users to go directly from the notification to

an Activity in your application, where they can look at one or more events

or do further work.

The action is defined by a PendingIntent containing an Intent that starts

an Activity in your application. To associate the PendingIntent with a

gesture, call the appropriate method of NotificationCompat.Builder. For

example, if you want to start Activity when the user clicks the notification

text in the notification drawer, you add the PendingIntent by

calling setContentIntent().

 A PendingIntent object helps you to perform an action on your

applications behalf, often at a later time, without caring of whether or

not your application is running. A PendingIntent is a description of an

intent and target action to perform with it .

https://developer.android.com/reference/android/app/PendingIntent.html



Intent notificationIntent =

new Intent(this, MainActivity.class);

17

PendingIntent notificationPendingIntent =

PendingIntent.getActivity(

this,

NOTIFICATION_ID,

notificationIntent,

PendingIntent.FLAG_UPDATE_CURRENT);

18

Step 4 - Issue the notification

Finally, you pass the Notification object to the system by calling

NotificationManager.notify() to send your notification. Make sure you

call NotificationCompat.Builder.build() method on builder object before

notifying it. This method combines all of the options that have been set and

return a new Notification object.

NotificationManager mNotifyManager = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

mNotifyManager.notify(NOTIFICATION_ID, myNotification);

	Creating the Broadcast Receiver
	Registering Broadcast Receiver
	Step 1 - Create Notification Builder
	Step 2 - Setting Notification Properties
	Step 3 - Attach Actions
	Step 4 - Issue the notification

