

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 2 – April. 2018

Scheme and Solution

Sub: Software Testing Code: 15IS63

Date

: 17/ 04/2018 Duration:

90

mins

Max

Marks: 50
Sem: VI Branch: ISE

Note: Answer any five questions:

1. a) Explain the basic decision table terms (6 M)

A Decision Table is the method used to build a complete set of test cases without using the

internal structure of the program in question. In order to create test cases we use a table to contain the

input and output values of a program. Sucha table is split up into four sections as shown below in fig

In fig there are two lines which divide the table into its main structure. The solid vertical line separates

the Stub and Entry portions of the table, and the solid horizontal line is the boundary between the

Conditions and Actions. So these lines separate the table into four portions, Condition Stub, Action

Stub, Condition Entries and Action Entries.

A column in the entry portion of the table is known as a rule. Values which are in the condition entry

columns are known as inputs and values inside the action entry portions are known as outputs. Outputs

are calculated depending on the inputs and specification of the program.

 In fig below there is an example of a typical Decision Table. The inputs in this given table derive the

outputs depending on what conditions these inputs meet. Notice the use of “-“in the table below, these

are known as don’t care entries. Don’t care entries are normally viewed as being false values which

don’t require the value to define the output.

Figure 2.2 shows its values from the inputs as true(T) or false(F) values which are binary conditions,

tables which use binary conditions are known as limited entry decision tables. Tables which use

multiple conditions are known as extended entry decision tables. One important aspect to notice about

decision tables is that they aren’t imperative as that they don’t apply any particular order over the

conditions or actions.

b) Define regression and progression testing. (4 M)

The goal of regression testing is to assure that things that worked correctly in the previous

build still work with the newly added code. Progression testing assumes that regression testing

was successful, and that the new functionality can be tested.

Regression testing is an absolute necessity in a series of builds because of the well-known

“ripple effect” of changes to an existing system. (The industrial average is that one change in

five introduces a new fault.)

2. Explain in detail Basis Path Testing with respect to triangle problem (10 M)

1. program triangle (input, output) ;

2. VAR a, b, c : integer;

3. IsATriangle : boolean;

4. BEGIN

5. writeln('Enter three integers which are sides of a triangle:');

6. readln (a,b,c);

7. writeln('Side A is ',a, 'Side B is ',b, 'side C is ',c);

8. IF (a < b + c) AND (b < a + c) AND (c < a + b)

9. THEN IsATriangle :=TRUE

10. ELSE IsATriangle := FALSE ;

11. IF IsATriangle

12. THEN

13. BEGIN

14. IF (a = b) XOR (a = c) XOR (b = c) AND NOT((a=b) AND (a=c))

15. THEN Writeln ('Triangle is Isosceles') ;

16. IF (a = b) AND (b = c)

17. THEN Writeln ('Triangle is Equilateral') ;

18. IF (a <> b) AND (a <> c) AND (b <> c)

19. THEN Writeln ('Triangle is Scalene') ;

20. END

21. ELSE WRITELN('Not a Triangle') ;

22. END.

DD-Path graph of a program.

p1: A-B-D-E-G-I-J-K-Last

p2: A-C-D-E-G-I-J-K-Last

p3: A-B-D-L-Last

p4: A-B-D-E-F-G-I-J-K-Last

p5: A-B-D-E-F-G-H-I-J-K-Last

p6: A-B-D-E-F-G-H-I-K-Last

if you follow paths p2, p3, p4, p5, and p6, you find that they are all infeasible. Path p2 is

infeasible, because passing through node C means the sides are not a triangle, so none of the

sequel decisions can be taken. Similarly, in p3, passing through node B means the sides do

form a triangle, so node L cannot be traversed. The others are all infeasible because they

involve cases where a triangle is of two types (e.g., isosceles and equilateral). The problem

here is that there are several inherent dependencies in the triangle problem. One is that if three

integers constitute sides of a triangle, they must be one of the three possibilities: equilateral,

isosceles, or scalene. A second dependency is that the three possibilities are mutually

exclusive: if one is true, the other two must be false.

fp1: A-C-D-L-Last (Not a triangle)

fp2: A-B-D-E-F-G-I-K-Last (Isosceles)

fp3: A-B-D-E-G-H-I-K-Last (Equilateral)

fp4: A-B-D-E-G-I-J-K-Last (Scalene)

3. Briefly explain test coverage metrics (5 M)

C0: Every statement

C1 :Every DD-Path (predicate outcome)

C1p: Every predicate to each outcome

C2: C1 coverage + loop coverage

Cd: C1 coverage + every dependent pair of DD-Paths

CMCC:Multiple condition coverage

Cik :Every program path that contains up to k repetitions of a loop (usually k = 2)

Cstat: Statistically significant” fraction of paths

C∞:All possible execution paths

Explain the terms: oracle, scaffolding, and self check oracles(5 M)

If a software test is a sequence of activities (stimuli and observations), an oracle is a predicate that

determines whether a given sequence is acceptable or not.

An oracle will respond with a pass or a fail verdict on the acceptability of any test sequence for which

it is defined.

A test oracle is complete if it can offer a verdict for any set of test input.

● A test oracle is sound if it offers the right verdict for any test case that it can offer a

verdict for.

● A test oracle is correct if it is both sound and complete.

○ It is partially correct if it is sound, but not complete.

Self-Check oracle
Usually written at the function level.

○ For one method or one high-level “feature”.

○ Properties based on behavior of that function.

● Work for any input to that function.

● Only accurate for those properties.

○ Faults may be missed if the specified properties are obeyed.

○ More properties = more expensive to write.

4. Explain the SATM application with the help of (i) Level 1 Data flow diagram ii) Upper level finite

state machine.

Level 1 Data flow diagram(5 M)

The structured analysis approach to requirements specification is the most widely used method in

the world. It enjoys extensive CASE tool support as well as commercial training, and is described in

numerous texts. The technique is based on three complementary models: function, data, and control.

Here we use data flow diagrams for the functional models, entity/relationship models for data, and

finite state machine models for the control aspect of the SATM system

That tool identifies external devices (such as the terminal doors) with lower case letters, and

elements of the functional decomposition with numbers . The open and filled arrowheads on flow

arrows signify whether the flow item is simple or compound. The portions of the SATM system

shown here pertain generally to the personal identification number (PIN) verification portion of

the system.

The Deft CASE tool distinguishes between simple and compound flows, where compound flows

may be decomposed into other flows, which may themselves be compound

Upper level finite state machine. (5 M)

The upper level finite state machine in Figure divides the system into states that correspond to

stages of customer usage.

5. Using Mc Cabe’s strongly connected write the path/edge traversal. And explain cyclomatic complexity

(8 M)

The cyclomatic complexity of a strongly connected graph is provided by the formula V(G) = e – n + p.

The number of edges is represented by e, the number of nodes by n and the number of connected areas

by p. If we apply this formula to the graph given in Figure 1.7, the number of linearly independent

circuits is:

V(G) = e – n + p

= 11 – 7 + 1 = 5

If we now delete the edge from G to A, we can see that we have to identify 5 different independent

paths to form our basis. An independent path is any path through the software that introduces at least

one new set of processing statements or a new condition. To find these paths, McCabe developed a

procedure known as the baseline method. The procedure works by starting at the source node. From

here, the leftmost path is followed until the sink node is reached. If we take the example in Figure, this

provides us with the path A, B, C, G. We then repeatedly retrace this path from the source node, but

change our decisions at every node with out-degree ³ 2, starting with the decision node lowest in the

path. For example, the next path would be A, B, C, B, C, G, as the decision at node C would be

‘flipped’. The third path would then be A, B, E, F, G, as the next lowest decision node is B. Two

important points should be made here. Firstly, if there is a loop, it only has to be traversed once, or else

the basis will contain redundant paths. Secondly, it is possible for there to be more than one basis; the

property of uniqueness is one not required.

The five linearly independent paths of our graph are as follows:

Path 1: A, B, C, G.

Path 2: A, B, C, B, C, G.

Path 3: A, B, E, F, G.

Path 4: A, D, E, F, G.

Path 5: A, D, F, G.

6. Define Predicate node, du paths, dc paths. Give du paths for stocks , locks, total locks and sales (10M)

A usage node USE(v, n) is a predicate use (denoted as P-use) iff the statement n is a predicate

statement

A definition-use path with respect to a variable v (denoted du-path) is a (sub)path in PATHS(P)

such that, for some v in V there are define and usage nodes DEF(v, m) and USE(v, n) such that m

and n are the initial and final nodes of the (sub)path

A definition-clear path with respect to a variable v (denoted dc-path) is a definition-use path

(sub)path in PATHS(P) with initial and final nodes DEF (v, m) and USE (v, n) such that no other

node in the (sub)path is a defining node of v. Testers should notice how these definitions capture the

essence of computing with stored data values. Du-paths and dc-paths describe the flow of data

across source statements from points at which the values are defined to points at which the values

are used. Du-paths that are not definition-clear are potential trouble spots.

1 program lock-stock_and_barrel

2 const

3 lock_price = 45.0;

4 stock_price = 30.0;

5 barrel_price 25.0;

6 type

7 STRING_30 = string[30]; {Salesman's Name}

8 var

9 locks, stocks, barrels, num_locks, num_stocks,

10 num_barrels, salesman_index, order_index : INTEGER;

11 sales, commission : REAL;

12 salesman : STRING_30;

14 BEGIN {program lock_stock_and_barrel}

15 FOR salesman_index := 1 TO 4 DO

16 BEGIN

17 READLN(salesman);

18 WRITELN ('Salesman is ', salesman);

19 num_locks := 0;

20 num_stocks := 0;

21 num_barrels := 0;

22 READ(locks);

23 WHILE locks <> -1 DO

24 BEGIN

25 READLN (stocks, barrels);

26 num_locks := num_locks + locks;

27 num_stocks := num_stocks + stocks;

28 num_barrels := num_barrels + barrels;

29 READ(locks);

30 END; (WHILE locks)

31 READLN;

32 WRITELN('Sales for ',salesman);

33 WRITELN('Locks sold: ', num_locks);

34 WRITELN('Stocks sold: ', num_stocks);

35 WRITELN('Barrels sold: ', num_barrels);

36 sales := lock_price*num_locks + stock_price*num_stocks

+ barrel_price*num_barrels;

37 WRITELN('Total sales: ', sales:8:2);

38 WRITELN;

39 IF (sales > 1800.0) THEN

40 BEGIN

commission := 0.10 * 1000.0;

42 commission := commission + 0.15 * 800.0;

43 commission := commission + 0.20 * (sales-1800.0);

44 END;

45 ELSE IF (sales > 1000.0) THEN

46 BEGIN

commission := 0.10 * 1000.0;

48 commission := commission + 0.15*(sales - 1000.0);

49 END

50 ELSE commission := 0.10 * sales;

51 WRITELN('Commission is $',commission:6:2);

52 END; (FOR salesman)

53 END. {program lock_stock_and-barrel}

We have DEF(stocks, 25) and USE(stocks, 27), so the path <25, 27> is a du- path wrt (with

respect to) stocks. Since there are no other defining nodes for stocks, this path is also definition-

clear.

Two defining and two usage nodes make the locks variable more interesting: we have

DEF(locks, 22), DEF(locks, 29), USE(locks, 23), and USE(locks, 26). These yield four du-paths:

p1 = <22, 23>

p2 = <22, 23, 24, 25, 26>

p3 = <29, 30, 23>

p4 = <29, 30, 23, 24, 25, 26>

Since there is only one defining node for sales, all the du-paths wrt sales must be definition-

clear. They are interesting because they illustrate predicate and computation uses. The first three

du-paths are easy:

p10 = <36, 37>

p11 = <36, 37, 38, 39>

p12 = <36, 37, 38, 39, 40, 41, 42, 43>

The du-paths for num_locks will lead us to typical test cases for computations. With two defining

nodes (DEF(num_locks, 19) and DEF(num_locks, 26)) and three usage nodes (USE(num_locks,

26), USE(num_locks, 33), USE(num_locks, 36)), we might expect six du-paths. Let’s take a closer

look

p5= <19,20,21,22,23,24,25,26>

p6 = <19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33>

p7 = <19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36>

p8 = <26, 27, 28, 29, 30, 31, 32, 33>

p9 = <26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36>

p10 = <36, 37>

p11 = <36, 37, 38, 39>

p12 = <36, 37, 38, 39, 40, 41, 42, 43>

7. Discuss the usage of decision table method to device test cases with example of commission problem

and triangle problem

Triangle Problem (5 M)

Conditions

c1: a<b+c? F T T T T T T T T T T

c2: b<a+c? - F T T T T T T T T T

c3: c<a+b? - - F T T T T T T T T

c4: a = b? - - - T T T T F F F F

c5: a = c? - - - T T F F T T F F

c6: b = c? - - - T F T F T F T F

Rule Count 32 16 8 1 1 1 1 1 1 1 1

a1: not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

Case ID a b C Expected Output

DT1 4 1 2 Not a Triangle

DT2 1 4 2 Not a Triangle

DT3 1 2 4 Not a Triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

Test Cases for the Commission Problem:(5 M)

Test Case locks Stocks barrels sales commission

DT1 5 5 5 500 50

DT2 15 15 15 1500 175

DT3 25 25 25 2500 360

8. Explain i) Statement coverage (5 M) ii) Block coverage (5 M)

The statement coverage of T with respect to (P, R) is computed as Sc/(Se-Si) , where Sc is the number

of statements covered, Si is the number of unreachable statements, and Se is the total number of

statements in the program, i.e. the size of the coverage domain.

T is considered adequate with respect to the statement coverage criterion if the statement coverage of T

with respect to (P, R) is 1.

The block coverage of T with respect to (P, R) is computed as Bc/(Be -Bi) , where Bc is the number of

blocks covered, Bi is the number of unreachable blocks, and Be is the total number of blocks in the

program, i.e. the size of the block coverage domain. T is considered adequate with respect to the block

coverage criterion if the statement coverage of T with respect to (P, R) is 1.

