

USN

Internal Assessment Test 1 – April 2018

Questions and Solutions

Sub: Operating Systems Sub Code: 15CS64 Branch: ISE

Date: 17/04/2018 Duration: 90 mins Max Marks: 50 Sem / Sec: VI/ A, B OBE

Answer any FIVE FULL Questions MARKS
CO RBT

1 (a) Servers can be designed to limit the number of open connections. For example, a

server may wish to have only N socket connections at any point in time. As soon

as N connections are made, the server will not accept another incoming connection

until an existing connection is released. Explain how semaphores can be used by

the server to limit the number of concurrent connections.

do {

//Declare a semaphore S and initialize to N

semaphore S=N;

...

wait(S);

//allow socket connection

...

signal(S);

// remainder section

}while (TRUE);

[05] CO2 L3

1 (b) Explain an N-process solution to critical section problem which uses testAndSet()

atomic instruction. Also explain how the algorithm satisfies all the necessary

conditions of the critical section.

The common data structures used are

boolean waiting[n];

boolean lock;

These data structures are initialized to false.
do {

waiting [i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key = TestAndSet(&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && ! w a i t i n g [j])

j = (j + 1) % n;

if (j == i)

lock = FALSE;

else

[05] CO3 L2

waiting[j] = FALSE;

// remainder section

}while (TRUE);

Mutual Exclusion:

Process P can enter its critical section only if either waiting[i] is false or key is false.

The value of key can become false only if the TestAndSet() is executed. The first

process to execute the TestAndSet () will find key == false; all others must wait.

The variable waiting[i] can become false only if another process leaves its critical

section; only one waiting [i] is set to false, maintaining the mutual-exclusion

requirement.

Progress:

A process exiting the critical section either sets lock to false or sets waiting[j] to

false. Both allow a process that is waiting to enter its critical section to proceed.

Bounded Waiting:

When a process leaves its critical section, it scans the array waiting in the cyclic

ordering (i+1, i+2, … , n-1, 0, ..., i-1). It designates the first process in this ordering

that is in the entry section (waiting [j] =- true) as the next one to enter the critical

section. Any process waiting to enter its critical section will thus do so within n — 1

turns.

2 (a) Explain the Dining Philosophers solution using monitors.

This solution imposes the restriction that a philosopher may pick up her chopsticks

only if both of them are available.

To code this solution, we need to distinguish among three states in which we may

find a philosopher. For this purpose, we introduce the following data structure:

enum {thinking, hungry, eating} state[5];

thinking: State when philosopher does not need chopsticks

hungry: State when philosopher needs chopsticks, but didn’t obtain them

eating: State when philosopher needs chopsticks, and has obtained them

Philosopher i can set the variable state[i] = eating only if her two neighbours are not

eating:

(state[(i+4) °/» 5] != eating) and (state[(i+1) % 5] != eating).

We also need to declare condition self [5] where philosopher i can wait when she is

hungry but is unable to obtain the chopsticks she needs.
The following is the solution for each philosopher. Each philosopher i must invoke the

operations pickup () and putdownO in the following sequence:

dp.pickup(i);

//eat

dp.putdown(i);

The monitor implementation is as follows:

monitor dp

enum {THINKING, HUNGRY, EATING}state [5]

condition self [5] ;

[05] CO2 L2

void pickup(int i) {

state [i] = HUNGRY;

test (i) ;

if (state [i] != EATING)

self [i] .wait() ;

}

void putdown(int i) {

state til = THINKING;

test((i + 4) % 5} ;

test((i + 1) % 5) ;

}

void test(int i) {

if ((state [(i + 4) % 5] != EATING) &&

(state [i] == HUNGRY) &&

(state [(i + 1) % 5] != EATING)) {

state [i] = EATING;

self [i] .signal() ;

}

 }

initialization-code () {

for (int i = 0; i < 5; i++)

state [i] = THINKING;

}

}

2 (b) What do you mean by race condition? Explain Readers-Writes problem with

semaphore in detail.

When several processes access and manipulate the same data concurrently and the

outcome of the execution depends on the particular order in which the access takes

place, is called a race condition.

To guard against the race condition above, we need to ensure that only one process

at a time can be manipulating the shared variable/data by means of synchronization.

Readers-Writers Problem:

The reader processes share the following data structures:
semaphore mutex, wrt;

int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0.

The semaphore wrt is common to both reader and writer processes.

The mutex semaphore is used to ensure mutual exclusion when the variable

readcount is updated. The readcount variable keeps track of how many processes

are currently reading the object.

The semaphore wrt functions as a mutual-exclusion semaphore for the writers. It is

also used by the first or last reader that enters or exits the critical section. It is not

used by readers who

enter or exit while other readers are in their critical sections.

If a writer is in the critical section and n readers are waiting, then one reader is

queued on wrt, and n-1 readers are queued on mutex.

When a writer executes signal (wrt), we may resume the execution of either the

waiting readers or a single waiting writer.

[05] CO2 L2

//Writer Process

do {

wait(wrt);
// writing is performed

signal (wrt) ,-

}while (TRUE);

//Reader Process
do {

wait(mutex);

readcount + + ;

if (readcount == 1)

wait(wrt);

signal(mutex);

// reading is performed

wait (mutex) ,-

readcount--;

if (readcount == 0)

signal(wrt);

signal(mutex);

}while (TRUE);

3 (a) Explain how monitors can be used to solve bounded buffer problem.

monitor PC{

 //Shared variables

 type buffer[BUFFER_SIZE];

 int count;

 int p_index, c_index;

 condition full, empty; //to track how many full/empty

slots are currently present

 //procedure

 produce_item(type *data){

 if (count == BUFFER_SIZE)

 empty.wait(); // if no empty space then wait

 put_item(data); // Place the produced item in

buffer

 count = count + 1; // increment count of full slots

 full.signal(); // signal as we have at least 1

full slot

 }

 //procedure

 consume_item(type *data){

 if (count == 0)

 full.wait(); // wait for full signal

 remove_item(data); // remove item from buffer

 count = count - 1; // decrement count of full slots

 empty.signal(); //signal producer as we have at least 1

empty slot

 }

[05] CO2 L3

 //procedure

 put_item(type *data){

 buffer[p_index]=*data;

 index=(p_index+1)%BUFFER_SIZE;

 }

 //procedure

 remove_item(type *data){

 *data = buffer[c_index];

 c_index=(c_index+1)%BUFFER_SIZE;

 }

 //initialization code

 count = 0;

 p_index=0, c_index=0;

 }

 Producer();

 {

 while (TRUE)

 {

 PC.produce_item(&item); // make a new item

 }

 }

 Consumer();

 {

 while (TRUE)

 {

 PC.consume_item(&item); // call remove function in

monitor

 }

 }

3 (b) Differentiate the following with examples:

a. (i) Paging and Segmentation

b. (ii) Logical and Physical addresses

c. (iii) Internal and External Fragmentation

d. (iv) First-fit, worst-fit and best-fit algorithms.

Paging Segmentation

A page is of fixed block size. A segment is of variable size.

Paging may lead to internal

fragmentation.

Segmentation may lead to external

fragmentation.

The user specified address is

divided by CPU into a page

number and offset.

The user specifies each address by

two quantities a segment number

and the offset (Segment limit).

The hardware decides the page

size.

The segment size is specified by the

user.

Paging involves a page table that

contains base address of each

Segmentation involves the segment

table that contains segment number

[05] CO2 L2

page. and offset (segment length).

Logical addresses Physical addresses

It is the virtual address generated

by CPU

The physical address is a location in

a memory unit.

Set of all logical addresses

generated by CPU in reference to

a program is referred as Logical

Address Space.

Set of all physical addresses

mapped to the corresponding logical

addresses is referred as Physical

Address.

The user can view the logical

address of a program.

The user can never view physical

address of program

The user uses the logical address

to access the physical address.

The user can not directly access

physical address.

The Logical Address is generated

by the CPU

Physical Address is Computed by

MMU

Logical addresses Physical addresses

It is the virtual address generated

by CPU

The physical address is a location in

a memory unit.

Set of all logical addresses

generated by CPU in reference to

a program is referred as Logical

Address Space.

Set of all physical addresses

mapped to the corresponding logical

addresses is referred as Physical

Address.

The user can view the logical

address of a program.

The user can never view physical

address of program

The user uses the logical address

to access the physical address.

The user can not directly access

physical address.

The Logical Address is generated

by the CPU

Physical Address is Computed by

MMU

Internal Fragmentation External Fragmentation

Internal fragmentation is the

wasted space within each

allocated block because of

rounding up from the actual

requested allocation to the

allocation granularity.

External fragmentation is the various

free

spaced holes that are generated in

either your memory or disk space.

External fragmented blocks are

available for allocation, but may be

too small to be of any use.

It occurs when fixed sized It occurs when variable size memory

memory blocks are allocated to

the processes.

space are allocated to the processes

dynamically.

When the memory assigned to the

process is slightly larger than the

memory requested by the process

this creates free space in the

allocated block causing internal

fragmentation.

When the process is removed from

the memory, it creates the free space

in the memory causing external

fragmentation.

Solution: The memory must be

partitioned into variable sized

blocks and assign the best fit

block to the process.

Solution: Compaction, paging and

segmentation.

Example: Consider a multiple-

partition allocation scheme with a

hole of 18,464 bytes. Suppose

that the next process requests

18,462 bytes. If we allocate

exactly the requested block, we

are left with a hole of 2 bytes.

Example: First-fit and Best-fit strategies.

We could have a block of free (or

wasted) memory between every two

processes. If all

these small pieces of memory were

in one big free block instead, we

might be able to run several more

processes.

First Fit Best fit Worst fit

Allocates memory from

the first hole it

encounters large

enough to satisfy the

request.

The allocator places

a process in the

smallest block of

unallocated memory

in which it will fit.

The memory manager

places a process in the

largest block of

unallocated memory

available.

Example: Unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB

blocks, suppose a process requests 12KB of memory.

First fit will allocate

12KB of the 14KB

block to the process

Best-fit strategy will

allocate 12KB of the

13KB block to the

process.

Worst fit will allocate

12KB of the 19KB block

to the process, leaving

a 7KB block for future

use.

4 (a) Answer the following:

(i) What are deadlocks? (ii) What are its characteristics? (iii) What are the

necessary conditions for deadlock to occur? (iv) How many of these should occur

for a deadlock to happen. (v) What are the different methods to handle deadlocks?

In a multiprogramming environment, several processes may compete for a finite

number of resources. A process requests resources; and if the resources are not

available at that time, the process enters a waiting state. Sometimes, a waiting

process is never again able to change state, because the resources it has requested

[05] CO2 L1

are held by other waiting processes. This situation is called a deadlock.

Characteristics (or Necessary conditions):

A deadlock situation can arise if the following four conditions hold simultaneously

in a system:

1. Mutual exclusion. At least one resource must be held in a non-sharable

mode; that is, only one process at a time can use the resource. If another

process requests that resource, the requesting process must be delayed until

the resource has been released.

2. Hold and wait. A process must be holding at least one resource and

waiting to acquire additional resources that are currently being held by other

processes.

3. No preemption. Resources cannot be preempted. That is, a resource can

be released only voluntarily by the process holding it, after that process has

completed its task.

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such

that P0 is waiting for a resource held by P1, P1 is waiting for a resource held

by P2, •••, Pn-1 is waiting for a resource held by Pn, and Pn is waiting for a

resource held by P0.

Methods to handle deadlocks: Prevention, Avoidance, Detect and recover

4 (b) 1. Consider the following snapshot of the system:

 Allocation

 A B C D

P0 0 0 1 2

P1 1 0 0 0

P2 1 3 5 4

P3 0 6 3 2

P4 0 0 1 4

 (i) Find out need matrix.

(i) (ii) Is the system in a safe in its current state?

(ii) (iii) If a request from P1 arrived for (0,4,2,0), can it be granted immediately?

(iii) (iv) Is the system in a safe state after the new request?

 Max

 A B C D

P0 0 0 1 2

P1 1 7 5 0

P2 2 3 5 6

P3 0 6 5 2

P4 0 6 5 6

Available

A B C D

1 5 2 0

[05] CO2 L3

5 (a) (i) Consider a paging system with page table stored in memory.

a. If memory reference takes 200 ns, how long does a paged memory reference take?

b. (ii) If we add associative register and 75% of all page table references are found in

the associative registers, what is the effective memory access time? (Assume that

finding a page table entry in the associative memory/register takes zero time, if the

[05] CO3 L3

entry is found).

5 (b) 2. Answer the following:

3. (i) What is Resource Allocation Graph (RAG)?

4. (ii) Explain resource allocation graph with (a) deadlock (b) cycle but no deadlock.

5. (iii) Explain how RAG is useful describing deadly embrace by considering your

own example

Deadlocks can be described more precisely in terms of a directed graph called a

system resource-allocation graph. This graph consists of a set of vertices V and a

set of edges E. The set of vertices V is partitioned into two different types of nodes:

P = {P1, P2,…, Pn}, the set consisting of all the active processes in the

system, and R = {R1, R2, … Rm}, the set consisting of all resource types in the

system.

[05] CO2 L2

Take example on the left. Here all the resources are part of a cycle. From this, we

learn that the system is in a deadlocked state. Take example on the right. Here, even

though all the resources are occupied by all the processes, not all resources are part

of a cycle. Hence, no deadlock.

6 (a) Given the memory partitions of 100K, 500K, 200K, 300K, and 600K, apply first

fit, worst fit, and best fit algorithms to place 212K, 417K, 112K, 426K.

[05] CO3 L3

6 (b) What is the principle behind paging. Explain its operation, clearly indicating how

the logical addresses are converted to physical addresses.

Paging is a memory-management scheme that permits the physical address

space of a process to be non-contiguous. Paging avoids the considerable

problem of fitting memory chunks of varying sizes onto the backing store.

The basic method for implementing paging involves breaking physical

memory into fixed-sized blocks called frames and breaking logical memory

into blocks of the same size called pages. When a process is to be executed,

its pages are loaded into any available memory frames from the backing

store. The backing store is divided into fixed-sized blocks that are of the

same size as the memory frames.

Every address generated by the CPU is divided into two parts: a page

number (p) and a page offset (d). The page number is used as an index into

a page table. The page table contains the base address of each page in

physical memory. This base address is combined with the page offset to

define the physical memory address that is sent to the memory unit.

If the size of logical address space is 2m and a page size is 2n addressing

units (bytes or words), then the high-order m – n bits of a logical address

designate the page number, and the n low-order bits designate the page

offset. Thus, the logical address is as follows:

where p is an index into the page table and d is the displacement within the

page.

Logical address to physical address:

As a concrete (although minuscule) example, consider the memory in the

Figure below. Using a page size of 4 bytes and a physical memory of 32

bytes (8 pages), we show how the user's view of memory can be mapped

into physical memory. Logical address 0 is page 0, offset 0. Indexing into

the page table, we find that page 0 is in frame 5. Thus, logical address 0

[05] CO3 L2

maps to physical address

20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical

address 23 (= (5x4) + 3). Logical address 4 is page 1, offset 0; according to

the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to

physical address 24 (= (6x4) + 0). Logical address 13 maps to physical

address 9.

7 (a) Consider the following segment table:

Segment Base Length

0 330 124

1 876 211

2 111 99

3 498 302

What are the physical addresses for the following logical addresses?

(i) 0,99 (ii) 2,78 (iii) 1,265 (iv) 3,222 (v) 0,111

Indicate which addresses generate segment fault.

[05] CO3 L3

7 (b) Answer the following:

(i) What is proportional frame allocation?

(ii) What is Thrashing?

(iii) What causes thrashing?

(iv) How does the system detect thrashing?

(v) How can thrashing be prevented?

(i) In proportional allocation which we allocate available memory to each process according

to its size. Let the size of the virtual memory for process pt be si, and define S=Σsi

Then, if the total number of available frames is m, we allocate a, frames to process pi,
where a, is approximately a, = Sj/S x m.

(ii) If the process does not have the number of frames it needs to support pages

in active use, it will quickly page-fault. At this point, it must replace some page.

However, since all its pages are in active use, it must replace a page that will be

needed again right away.

Consequently, it quickly faults again, and again, and again, replacing pages that

it must bring back in immediately.

This high paging activity is called thrashing. A process is thrashing if it is

spending more time paging than executing.

(iii) Causes of Thrashing:

Consider the following scenario. The operating system sees CPU utilization is

too low, it increase the degree of multiprogramming by introducing a new

process to the system. A global page-replacement algorithm replaces pages.

Now suppose that a process enters a new phase in its execution and needs more

frames. It starts faulting and

taking frames away from other processes. These processes need those pages,

however, and so they also fault, taking frames from other processes. These

faulting processes must use the paging device to swap pages in and out.

As they queue up for the paging device, the ready queue empties. As processes

wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the

degree of multiprogramming as a result. The new process introduces in turn

causes more page faults and a longer queue for the paging device. As a result,

CPU utilization drops even further, and the CPU scheduler tries to increase the

degree of multiprogramming even more. Thus Thrashing occurs, and system

throughput plunges.

The page fault rate increases tremendously As a result, the effective memory-

access time increases. No work is getting done, because the processes are

spending all their time paging.

(iv)Detection of Thrashing:

The system can detect thrashing by evaluating the level of CPU utilization as

compared to the level of multiprogramming. It can be eliminated by reducing

the level of multiprogramming.

(v)Preventing Thrashing:

To prevent thrashing, we must provide a process with as many frames as it

[05] CO2 L1

needs. The working-set strategy is a way to look at how many frames a process

is actually using.

8 (a) For the following reference string calculate the page faults that occur using FIFO,

Optimal, and LRU for 3 and 5 page frames,

respectively:1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6.

[05] CO2 L3

8 (b) What are Translation Lookaside Buffers (TLBs)? Explain TLB in detail with a

simple paging system with a neat diagram.

[05] CO3 L1

Translation look-aside buffers (TLBs) are a special, small, fast lookup hardware cache. The TLB is

associative, high-speed memory. Each entry in the TLB consists of two parts: a key (or tag) and a value.

When the associative memory is presented with an item, the item is compared with all keys

simultaneously. If the item is found, the corresponding value field is returned. The search is fast; the

hardware, however, is expensive.

Typically, the number of entries in a TLB is small, often numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains only a few of the page-table

entries. When a logical address is generated by the CPU, its page number is presented to the TLB. If the

page number is found, its frame number is immediately available and is used to access memory. The

whole task may take less than 10 percent longer than it would if an unmapped memory reference were

used.

If the page number is not in the TLB (known as a TLB miss), a memory reference to the page table must

be made. When the frame number is obtained, we can use it to access memory. In addition, we add the

page number and frame number to the TLB, so that they will be found quickly on the next reference. If

the TLB is already full of entries, the operating system must select one for replacement. Replacement

policies range from least recently used (LRU) to random. Furthermore, some TLBs allow entries to be

wired down, meaning that they cannot be removed from the TLB. Typically, TLB entries for kernel code

are wired down.

END

