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1 (a) Servers can be designed to limit the number of open connections. For example, a 

server may wish to have only N socket connections at any point in time. As soon 

as N connections are made, the server will not accept another incoming connection 

until an existing connection is released. Explain how semaphores can be used by 

the server to limit the number of concurrent connections. 

 
 

do { 

 

//Declare a semaphore S and initialize to N 

semaphore S=N; 

... 

wait(S); 

//allow socket connection 

... 

signal(S); 

// remainder section 

}while (TRUE); 
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1 (b) Explain an N-process solution to critical section problem which uses testAndSet() 

atomic instruction. Also explain how the algorithm satisfies all the necessary 

conditions of the critical section. 

 
 

The common data structures used are 

boolean waiting[n]; 

boolean lock; 

These data structures are initialized to false.  
do { 

waiting [i] = TRUE; 

key = TRUE; 

while (waiting[i] && key) 

key = TestAndSet(&lock); 

waiting[i] = FALSE; 

 

// critical section 

 
j = (i + 1) % n; 

while ((j != i) && ! w a i t i n g [ j ] ) 

j = (j + 1) % n; 

 

if (j == i) 

lock = FALSE; 

else 
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waiting[j] = FALSE; 

// remainder section 

}while (TRUE); 

 

Mutual Exclusion: 

Process P can enter its critical section only if either waiting[i] is false or key is false. 

The value of key can become false only if the TestAndSet() is executed. The first 

process to execute the TestAndSet () will find key == false; all others must wait.  

 

The variable waiting[i] can become false only if another process leaves its critical 

section; only one waiting [i] is set to false, maintaining the mutual-exclusion 

requirement. 
 

Progress: 

A process exiting the critical section either sets lock to false or sets waiting[j] to 

false. Both allow a process that is waiting to enter its critical section to proceed. 

 

Bounded Waiting: 

When a process leaves its critical section, it scans the array waiting in the cyclic 

ordering (i+1, i+2, … , n-1, 0, ..., i-1). It designates the first process in this ordering 

that is in the entry section (waiting [j] =- true) as the next one to enter the critical 

section. Any process waiting to enter its critical section will thus do so within n — 1 

turns. 

 

 

2 (a) Explain the Dining Philosophers solution using monitors. 

 

This solution imposes the restriction that a philosopher may pick up her chopsticks 

only if both of them are available.  

To code this solution, we need to distinguish among three states in which we may 

find a philosopher. For this purpose, we introduce the following data structure: 

enum {thinking, hungry, eating} state[5]; 

thinking: State when philosopher does not need chopsticks 

hungry: State when philosopher needs chopsticks, but didn’t obtain them 

eating: State when philosopher needs chopsticks, and has obtained them 

 

Philosopher i can set the variable state[i] = eating only if her two neighbours are not 

eating:  

( state[(i+4) °/» 5] != eating) and ( state[(i+1) % 5] != eating). 

We also need to declare condition self [5] where philosopher i can wait when she is 

hungry but is unable to obtain the chopsticks she needs. 
The following is the solution for each philosopher. Each philosopher i must invoke the 

operations pickup () and putdownO in the following sequence: 

dp.pickup(i); 

//eat 

dp.putdown(i); 

The monitor implementation is as follows: 

monitor dp 

enum {THINKING, HUNGRY, EATING}state [5] 

condition self [5] ; 
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void pickup(int i) { 

state [i] = HUNGRY; 

test (i) ; 

if (state [i] != EATING) 

self [i] .wait() ; 

} 

 

void putdown(int i) { 

state til = THINKING; 

test((i + 4) % 5} ; 

test( (i + 1) % 5) ; 

} 

 

void test(int i) { 

if ((state [(i + 4) % 5] != EATING) && 

(state [i] == HUNGRY) && 

(state [(i + 1) % 5] != EATING)) { 

state [i] = EATING; 

self [i] .signal() ; 

} 

  } 

 

initialization-code () { 

for (int i = 0; i < 5; i++) 

state [i] = THINKING; 

} 

} 

 

2 (b)  What do you mean by race condition? Explain Readers-Writes problem with 

semaphore in detail. 

 

When several processes access and manipulate the same data concurrently and the 

outcome of the execution depends on the particular order in which the access takes 

place, is called a race condition.  

To guard against the race condition above, we need to ensure that only one process 

at a time can be manipulating the shared variable/data by means of synchronization. 

 

Readers-Writers Problem: 

The reader processes share the following data structures: 
semaphore mutex, wrt; 

int readcount; 

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0.  

 

The semaphore wrt is common to both reader and writer processes. 

The mutex semaphore is used to ensure mutual exclusion when the variable 

readcount is updated. The readcount variable keeps track of how many processes 

are currently reading the object.  

The semaphore wrt functions as a mutual-exclusion semaphore for the writers. It is 

also used by the first or last reader that enters or exits the critical section. It is not 

used by readers who 

enter or exit while other readers are in their critical sections. 

 

If a writer is in the critical section and n readers are waiting, then one reader is 

queued on wrt, and n-1 readers are queued on mutex.  

 

When a writer executes signal (wrt), we may resume the execution of either the 

waiting readers or a single waiting writer. 
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//Writer Process 

do { 

wait(wrt); 
// writing is performed 

signal (wrt) ,- 

}while (TRUE); 

 
//Reader Process 
do {  

wait(mutex); 

readcount + + ; 

if (readcount == 1) 

wait(wrt); 

signal(mutex); 

// reading is performed 

wait (mutex) ,- 

readcount--; 

if (readcount == 0) 

signal(wrt); 

signal(mutex); 

}while (TRUE); 
 

 

3 (a)  Explain how monitors can be used to solve bounded buffer problem. 

 
monitor PC{ 

 //Shared variables 

 type buffer[BUFFER_SIZE]; 

 int count; 

 int p_index, c_index;  

 condition full, empty; //to track how many full/empty 

slots are currently present 
  

   

   //procedure  

 produce_item(type *data){ 

     if (count == BUFFER_SIZE)  

  empty.wait();     // if no empty space then wait 

     put_item(data);    // Place the produced item in 

buffer 

     count = count + 1;       // increment count of full slots 

     full.signal();       // signal as we have at least 1 

full slot 

   } 

 

 //procedure  

 consume_item(type *data){ 

     if (count == 0)   

  full.wait();    // wait for full signal 

     remove_item(data);     // remove item from buffer 

     count = count - 1;     // decrement count of full slots 

     empty.signal();  //signal producer as we have at least 1 

empty slot 

 } 
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 //procedure 

 put_item(type *data){ 

  buffer[p_index]=*data; 

  index=(p_index+1)%BUFFER_SIZE; 

 } 

 

 //procedure 

 remove_item(type *data){ 

  *data = buffer[c_index]; 

  c_index=(c_index+1)%BUFFER_SIZE; 

 } 

 

 //initialization code 

   count = 0; 

 p_index=0, c_index=0; 

  } 

 

  Producer(); 

  { 

    while (TRUE) 

   { 

      PC.produce_item(&item);            // make a new item 

       

   } 

  } 

 

  Consumer(); 

  { 

    while (TRUE) 

    { 

      PC.consume_item(&item);         // call remove function in 

monitor 

   } 

  } 

 

 

3 (b) Differentiate the following with examples: 

a. (i)   Paging and Segmentation 

b. (ii)  Logical and Physical addresses 

c. (iii) Internal and External Fragmentation 

d. (iv) First-fit, worst-fit and best-fit algorithms. 

 

Paging Segmentation 

A page is of fixed block size.  A segment is of variable size. 

Paging may lead to internal 

fragmentation. 

Segmentation may lead to external 

fragmentation. 

The user specified address is 

divided by CPU into a page 

number and offset. 

The user specifies each address by 

two quantities a segment number 

and the offset (Segment limit). 

The hardware decides the page 

size. 

The segment size is specified by the 

user. 

Paging involves a page table that 

contains base address of each 

Segmentation involves the segment 

table that contains segment number 
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page. and offset (segment length). 

 

Logical addresses Physical addresses 

It is the virtual address generated 

by CPU 

The physical address is a location in 

a memory unit. 

Set of all logical addresses 

generated by CPU in reference to 

a program is referred as Logical 

Address Space. 

Set of all physical addresses 

mapped to the corresponding logical 

addresses is referred as Physical 

Address. 

The user can view the logical 

address of a program. 

The user can never view physical 

address of program 

The user uses the logical address 

to access the physical address. 

The user can not directly access 

physical address. 

The Logical Address is generated 

by the CPU 

Physical Address is Computed by 

MMU 

 

 

Logical addresses Physical addresses 

It is the virtual address generated 

by CPU 

The physical address is a location in 

a memory unit. 

Set of all logical addresses 

generated by CPU in reference to 

a program is referred as Logical 

Address Space. 

Set of all physical addresses 

mapped to the corresponding logical 

addresses is referred as Physical 

Address. 

The user can view the logical 

address of a program. 

The user can never view physical 

address of program 

The user uses the logical address 

to access the physical address. 

The user can not directly access 

physical address. 

The Logical Address is generated 

by the CPU 

Physical Address is Computed by 

MMU 

 

Internal Fragmentation External Fragmentation 

Internal fragmentation is the 

wasted space within each 

allocated block because of 

rounding up from the actual 

requested allocation to the 

allocation granularity. 

External fragmentation is the various 

free 

spaced holes that are generated in 

either your memory or disk space. 

External fragmented blocks are 

available for allocation, but may be 

too small to be of any use. 

It occurs when fixed sized It occurs when variable size memory 



 

memory blocks are allocated to 

the processes. 

space are allocated to the processes 

dynamically. 

When the memory assigned to the 

process is slightly larger than the 

memory requested by the process 

this creates free space in the 

allocated block causing internal 

fragmentation. 

When the process is removed from 

the memory, it creates the free space 

in the memory causing external 

fragmentation. 

Solution: The memory must be 

partitioned into variable sized 

blocks and assign the best fit 

block to the process. 

Solution: Compaction, paging and 

segmentation. 

Example: Consider a multiple-

partition allocation scheme with a 

hole of 18,464 bytes. Suppose 

that the next process requests 

18,462 bytes. If we allocate 

exactly the requested block, we 

are left with a hole of 2 bytes. 

Example: First-fit and Best-fit strategies. 

We could have a block of free (or 

wasted) memory between every two 

processes. If all 

these small pieces of memory were 

in one big free block instead, we 

might be able to run several more 

processes. 

 

 

First Fit Best fit Worst fit 

Allocates memory from 

the first hole it 

encounters large 

enough to satisfy the 

request. 

The allocator places 

a process in the 

smallest block of 

unallocated memory 

in which it will fit. 

The memory manager 

places a process in the 

largest block of 

unallocated memory 

available. 

Example: Unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB 

blocks, suppose a process requests 12KB of memory. 

First fit will allocate 

12KB of the 14KB 

block to the process 

 

Best-fit strategy will 

allocate 12KB of the 

13KB block to the 

process. 

Worst fit will allocate 

12KB of the 19KB block 

to the process, leaving 

a 7KB block for future 

use. 

 

 

4 (a) Answer the following: 

(i) What are deadlocks? (ii) What are its characteristics? (iii) What are the 

necessary conditions for deadlock to occur? (iv) How many of these should occur 

for a deadlock to happen. (v) What are the different methods to handle deadlocks? 

 

In a multiprogramming environment, several processes may compete for a finite 

number of resources. A process requests resources; and if the resources are not 

available at that time, the process enters a waiting state. Sometimes, a waiting 

process is never again able to change state, because the resources it has requested 
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are held by other waiting processes. This situation is called a deadlock. 
 

Characteristics (or Necessary conditions): 

A deadlock situation can arise if the following four conditions hold simultaneously 

in a system: 

1. Mutual exclusion. At least one resource must be held in a non-sharable 

mode; that is, only one process at a time can use the resource. If another 

process requests that resource, the requesting process must be delayed until 

the resource has been released. 

2. Hold and wait. A process must be holding at least one resource and 

waiting to acquire additional resources that are currently being held by other 

processes. 

3. No preemption. Resources cannot be preempted. That is, a resource can 

be released only voluntarily by the process holding it, after that process has 

completed its task. 

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such 

that P0 is waiting for a resource held by P1, P1 is waiting for a resource held 

by P2, •••, Pn-1 is waiting for a resource held by Pn, and Pn is waiting for a 

resource held by P0. 

 

Methods to handle deadlocks: Prevention, Avoidance, Detect and recover 

 

4 (b)  1. Consider the following snapshot of the system: 

 Allocation 

 A B C D 

P0 0 0 1 2 

P1 1 0 0 0 

P2 1 3 5 4 

P3 0 6 3 2 

P4 0 0 1 4 

  (i) Find out need matrix.  

(i) (ii) Is the system in a safe in its current state? 

(ii) (iii) If a request from P1 arrived for (0,4,2,0), can it be granted immediately? 

(iii) (iv) Is the system in a safe state after the new request? 

 Max 

 A B C D 

P0 0 0 1 2 

P1 1 7 5 0 

P2 2 3 5 6 

P3 0 6 5 2 

P4 0 6 5 6 

Available 

A B C D 

1 5 2 0 
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5 (a) (i) Consider a paging system with page table stored in memory.  

a. If memory reference takes 200 ns, how long does a paged memory reference take? 

b. (ii) If we add associative register and 75% of all page table references are found in 

the associative registers, what is the effective memory access time? (Assume that 

finding a page table entry in the associative memory/register takes zero time, if the 
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entry is found). 

 

 

 

5 (b) 2. Answer the following: 

3. (i) What is Resource Allocation Graph (RAG)? 

4. (ii) Explain resource allocation graph with (a) deadlock (b) cycle but no deadlock. 

5. (iii) Explain how RAG is useful describing deadly embrace by considering your 

own example 

Deadlocks can be described more precisely in terms of a directed graph called a 

system resource-allocation graph. This graph consists of a set of vertices V and a 

set of edges E. The set of vertices V is partitioned into two different types of nodes: 

P = {P1, P2,…, Pn}, the set consisting of all the active processes in the 

system, and R = {R1, R2, … Rm}, the set consisting of all resource types in the 

system. 
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Take example on the left. Here all the resources are part of a cycle. From this, we 

learn that the system is in a deadlocked state. Take example on the right. Here, even 

though all the resources are occupied by all the processes, not all resources are part 

of a cycle. Hence, no deadlock. 

 

6 (a)  Given the memory partitions of 100K, 500K, 200K, 300K, and 600K, apply first 

fit, worst fit, and best fit algorithms to place 212K, 417K, 112K, 426K. 
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6 (b) What is the principle behind paging. Explain its operation, clearly indicating how 

the logical addresses are converted to physical addresses. 

Paging is a memory-management scheme that permits the physical address 

space of a process to be non-contiguous. Paging avoids the considerable 

problem of fitting memory chunks of varying sizes onto the backing store. 

 

The basic method for implementing paging involves breaking physical 

memory into fixed-sized blocks called frames and breaking logical memory 

into blocks of the same size called pages. When a process is to be executed, 

its pages are loaded into any available memory frames from the backing 

store. The backing store is divided into fixed-sized blocks that are of the 

same size as the memory frames.  

 

Every address generated by the CPU is divided into two parts: a page 

number (p) and a page offset (d). The page number is used as an index into 

a page table. The page table contains the base address of each page in 

physical memory. This base address is combined with the page offset to 

define the physical memory address that is sent to the memory unit. 

 

If the size of logical address space is 2m and a page size is 2n addressing 

units (bytes or words), then the high-order m – n bits of a logical address 

designate the page number, and the n low-order bits designate the page 

offset. Thus, the logical address is as follows: 

 
where p is an index into the page table and d is the displacement within the 

page. 

 

Logical address to physical address: 

As a concrete (although minuscule) example, consider the memory in the 

Figure below. Using a page size of 4 bytes and a physical memory of 32 

bytes (8 pages), we show how the user's view of memory can be mapped 

into physical memory. Logical address 0 is page 0, offset 0. Indexing into 

the page table, we find that page 0 is in frame 5. Thus, logical address 0 
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maps to physical address 

20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical 

address 23 (= (5x4) + 3). Logical address 4 is page 1, offset 0; according to 

the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to 

physical address 24 (= (6x4) + 0). Logical address 13 maps to physical 

address 9. 

 

 



 

 
 

 

 

7 (a) Consider the following segment table: 

Segment  Base  Length 

0 330 124 

1 876 211 

2 111 99 

3 498 302 

What are the physical addresses for the following logical addresses? 

(i) 0,99   (ii) 2,78   (iii) 1,265    (iv) 3,222  (v) 0,111 

Indicate which addresses generate segment fault. 
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7 (b)  Answer the following: 

(i)  What is proportional frame allocation? 

(ii)  What is Thrashing?  

(iii) What causes thrashing?  

(iv) How does the system detect thrashing?  

(v)  How can thrashing be prevented? 

 
(i) In proportional allocation which we allocate available memory to each process according 

to its size. Let the size of the virtual memory for process pt be si, and define S=Σsi 

Then, if the total number of available frames is m, we allocate a, frames to process pi, 
where a, is approximately a, = Sj/S x m. 

 

(ii) If the process does not have the number of frames it needs to support pages 

in active use, it will quickly page-fault. At this point, it must replace some page. 

However, since all its pages are in active use, it must replace a page that will be 

needed again right away.  

Consequently, it quickly faults again, and again, and again, replacing pages that 

it must bring back in immediately. 

This high paging activity is called thrashing. A process is thrashing if it is 

spending more time paging than executing. 

 

(iii) Causes of Thrashing: 

Consider the following scenario. The operating system sees CPU utilization is 

too low, it increase the degree of multiprogramming by introducing a new 

process to the system. A global page-replacement algorithm replaces pages.  

Now suppose that a process enters a new phase in its execution and needs more 

frames. It starts faulting and 

taking frames away from other processes. These processes need those pages, 

however, and so they also fault, taking frames from other processes. These 

faulting processes must use the paging device to swap pages in and out.  

As they queue up for the paging device, the ready queue empties. As processes 

wait for the paging device, CPU utilization decreases. 

 

The CPU scheduler sees the decreasing CPU utilization and increases the 

degree of multiprogramming as a result. The new process introduces in turn 

causes more page faults and a longer queue for the paging device. As a result, 

CPU utilization drops even further, and the CPU scheduler tries to increase the 

degree of multiprogramming even more. Thus Thrashing occurs, and system 

throughput plunges.  

 

The page fault rate increases tremendously As a result, the effective memory-

access time increases. No work is getting done, because the processes are 

spending all their time paging. 

 

(iv)Detection of Thrashing: 

The system can detect thrashing by evaluating the level of CPU utilization as 

compared to the level of multiprogramming. It can be eliminated by reducing 

the level of multiprogramming. 

 

(v)Preventing Thrashing: 

To prevent thrashing, we must provide a process with as many frames as it 
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needs. The working-set strategy is a way to look at how many frames a process 

is actually using. 

 

 

8 (a) For the following reference string calculate the page faults that occur using FIFO, 

Optimal, and LRU for 3 and 5 page frames, 

respectively:1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. 
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8 (b) What are Translation Lookaside Buffers (TLBs)? Explain TLB in detail with a 

simple paging system with a neat diagram. 
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Translation look-aside buffers (TLBs) are a special, small, fast lookup hardware cache. The TLB is 

associative, high-speed memory.  Each entry in the TLB consists of two parts: a key (or tag) and a value.  

 

When the associative memory is presented with an item, the item is compared with all keys 

simultaneously. If the item is found, the corresponding value field is returned. The search is fast; the 

hardware, however, is expensive.  

Typically, the number of entries in a TLB is small, often numbering between 64 and 1,024.  

 

The TLB is used with page tables in the following way. The TLB contains only a few of the page-table 

entries. When a logical address is generated by the CPU, its page number is presented to the TLB. If the 

page number is found, its frame number is immediately available and is used to access memory. The 

whole task may take less than 10 percent longer than it would if an unmapped memory reference were 

used. 

 

If the page number is not in the TLB (known as a TLB miss), a memory reference to the page table must 

be made. When the frame number is obtained, we can use it to access memory. In addition, we add the 

page number and frame number to the TLB, so that they will be found quickly on the next reference. If 

the TLB is already full of entries, the operating system must select one for replacement. Replacement 

policies range from least recently used (LRU) to random. Furthermore, some TLBs allow entries to be 

wired down, meaning that they cannot be removed from the TLB. Typically, TLB entries for kernel code 

are wired down. 
 

 
 

 

END        


