
1. What is similarity and dissimilarity? Explain similarity and dissimilarity measures between            

different attributes based on different types of attributes. 

Distance or similarity measures are essential to solve many pattern recognition problems such             

as classification and clustering. Various distance/similarity measures are available in literature           

to compare two data distributions. As the names suggest, a similarity measures how close two               

distributions are. For multivariate data complex summary methods are developed to answer            

this question. 

Similarity Measure 

● Numerical measure of how alike two data objects are. 

● Often falls between 0 (no similarity) and 1 (complete similarity). 

Dissimilarity Measure 

● Numerical measure of how different two data objects are. 

● Range from 0 (objects are alike) to ∞ (objects are different). 

Proximity refers to a similarity or dissimilarity. 

Similarity/Dissimilarity for Simple Attributes 

Here, p and q are the attribute values for two data objects. 

Common Properties of Dissimilarity Measures 

Distance, such as the Euclidean distance, is a dissimilarity measure and has some well known               

properties: 

1. d(p, q) ≥ 0 for all p and q, and d(p, q) = 0 if and only if p = q, 
2. d(p, q) = d(q,p) for all p and q, 
3. d(p, r) ≤ d(p, q) + d(q, r) for all p, q, and r, where d(p, q) is the distance (dissimilarity)                     

between points (data objects), p and q. 

A distance that satisfies these properties is called a metric.Following is a list of several common                

distance measures to compare multivariate data. We will assume that the attributes are all              

continuous. 

Euclidean Distance 

Assume that we have measurements xik, i = 1, … , N, on variables k = 1, … , p (also called                      

attributes). 



The Euclidean distance between the ith and jth objects is 

[Math Processing Error] 

for every pair (i, j) of observations. 

The weighted Euclidean distance is 

 [Math Processing Error] 

If scales of the attributes differ substantially, standardization is necessary. 

 Minkowski Distance 

The Minkowski distance is a generalization of the Euclidean distance. 

With the measurement,  xik ,  i = 1, … , N,  k = 1, … , p, the Minkowski distance is 

[Math Processing Error] 

where λ ≥ 1.  It is also called the Lλ metric. 

● λ = 1 : L1 metric, Manhattan or City-block distance. 

● λ = 2 : L2 metric, Euclidean distance. 

● λ → ∞ : L∞ metric, Supremum distance. 

[Math Processing Error] 

Note that λ and p are two different parameters. Dimension of the data matrix remains finite. 

Mahalanobis Distance 

Let X be a N × p matrix. Then the ith row of X is 

[Math Processing Error] 

The Mahalanobis distance is 

[Math Processing Error] 

where ∑ is the p×p sample covariance matrix. 

 

2. Why data preprocessing required in data mining? Explain various steps involved in data              

preprocessing 



Why preprocessing ? 

1. Real world data are generally 

○ Incomplete: lacking attribute values, lacking certain attributes of interest, or          

containing only aggregate data 

○ Noisy: containing errors or outliers 

○ Inconsistent: containing discrepancies in codes or names 

2. Tasks in data preprocessing 

○ Data cleaning: fill in missing values, smooth noisy data, identify or remove            

outliers, and resolve inconsistencies. 

○ Data integration: using multiple databases, data cubes, or files. 

○ Data transformation: normalization and aggregation. 

○ Data reduction: reducing the volume but producing the same or similar analytical            

results. 

○ Data discretization: part of data reduction, replacing numerical attributes with          

nominal ones. 

Data cleaning 

1. Fill in missing values (attribute or class value): 

○ Ignore the tuple: usually done when class label is missing. 

○ Use the attribute mean (or majority nominal value) to fill in the missing value. 

○ Use the attribute mean (or majority nominal value) for all samples belonging to             

the same class. 

○ Predict the missing value by using a learning algorithm: consider the attribute            

with the missing value as a dependent (class) variable and run a learning             

algorithm (usually Bayes or decision tree) to predict the missing value. 

2. Identify outliers and smooth out noisy data: 

○ Binning 

■ Sort the attribute values and partition them into bins (see "Unsupervised           

discretization" below); 

■ Then smooth by bin means,  bin median, or  bin boundaries. 

○ Clustering: group values in clusters and then detect and remove outliers           

(automatic or manual) 

○ Regression: smooth by fitting the data into regression functions. 

3. Correct inconsistent data: use domain knowledge or expert decision. 

Data transformation 



1. Normalization: 

○ Scaling attribute values to fall within a specified range. 

■ Example: to transform V in [min, max] to V' in [0,1], apply            

V'=(V-Min)/(Max-Min) 

○ Scaling by using mean and standard deviation (useful when min and max are             

unknown or when there are outliers): V'=(V-Mean)/StDev 

2. Aggregation: moving up in the concept hierarchy on numeric attributes. 

3. Generalization: moving up in the concept hierarchy on nominal attributes. 

4. Attribute construction: replacing or adding new attributes inferred by existing          

attributes. 

Data reduction 

1. Reducing the number of attributes 

○ Data cube aggregation: applying roll-up, slice or dice operations. 

○ Removing irrelevant attributes: attribute selection (filtering and wrapper        

methods), searching the attribute space (see Lecture 5: Attribute-oriented         

analysis). 

○ Principle component analysis (numeric attributes only): searching for a lower          

dimensional space that can best represent the data.. 

2. Reducing the number of attribute values 

○ Binning (histograms): reducing the number of attributes by grouping them into           

intervals (bins). 

○ Clustering: grouping values in clusters. 

○ Aggregation or generalization 

3. Reducing the number of tuples 

○ Sampling 

Discretization and generating concept hierarchies 

1. Unsupervised discretization -  class variable is not used. 

○ Equal-interval (equiwidth) binning: split the whole range of numbers in intervals           

with equal size. 

○ Equal-frequency (equidepth) binning: use intervals containing equal number of         

values. 

2. Supervised discretization - uses the values of the class variable. 

○ Using class boundaries. Three steps: 

■ Sort values. 

■ Place breakpoints between values belonging to different classes. 



■ If too many intervals, merge intervals with equal or similar class           

distributions. 

○ Entropy (information)-based discretization. Example: 

■ Information in a class distribution: 

■ Denote a set of five values occurring in tuples belonging to two            

classes (+ and -) as [+,+,+,-,-] 

■ That is, the first 3 belong to "+" tuples and the last 2 - to "-" tuples 

■ Then, Info([+,+,+,-,-]) = -(3/5)*log(3/5)-(2/5)*log(2/5) (logs are      

base 2) 

■ 3/5 and 2/5 are relative frequencies (probabilities) 

■ Ignoring the order of the values, we can use the following           

notation: [3,2] meaning 3 values from one class and 2 - from the             

other. 

■ Then, Info([3,2]) = -(3/5)*log(3/5)-(2/5)*log(2/5) 

■ Information in a split (2/5 and 3/5 are weight coefficients): 

■ Info([+,+],[+,-,-]) = (2/5)*Info([+,+]) + (3/5)*Info([+,-,-]) 

■ Or, Info([2,0],[1,2]) = (2/5)*Info([2,0]) + (3/5)*Info([1,2]) 

■ Method: 

■ Sort the values; 

■ Calculate information in all possible splits; 

■ Choose the split that minimizes information; 

■ Do not include breakpoints between values belonging to the same          

class (this will increase information); 

■ Apply the same to the resulting intervals until some stopping          

criterion is satisfied. 

3. Generating concept hierarchies: recursively applying partitioning or discretization        

methods. 

 

 

3. What is Apriori algorithm? How its is used to find  frequent item sets? Explain. 

The apriori principle can reduce the number of itemsets we need to examine. Put              
simply, the apriori principle states that if an itemset is infrequent, then all its subsets               
must also be infrequent. This means that if {beer} was found to be infrequent, we can                
expect {beer, pizza} to be equally or even more infrequent. So in consolidating the list of                
popular itemsets, we need not consider {beer, pizza}, nor any other itemset            
configuration that contains beer. 



 
Finding itemsets with high support 

Using the apriori principle, the number of itemsets that have to be examined can be               
pruned, and the list of popular itemsets can be obtained in these steps: 
Step 0. Start with itemsets containing just a single item, such as {apple} and {pear}. 
Step 1. Determine the support for itemsets. Keep the itemsets that meet your minimum              
support threshold, and remove itemsets that do not. 
Step 2. Using the itemsets you have kept from Step 1, generate all the possible itemset                
configurations. 
Step 3. Repeat Steps 1 & 2 until there are no more new itemsets. 
 
We have seen how the apriori algorithm can be used to identify itemsets with high               
support. The same principle can also be used to identify item associations with high              
confidence or lift. Finding rules with high confidence or lift is less computationally taxing              
once high-support itemsets have been identified, because confidence and lift values are            
calculated using support values. 
ake for example the task of finding high-confidence rules. If the rule 
  
   {beer, chips -> apple} 
  
has low confidence, all other rules with the same constituent items and with apple on               
the right hand side would have low confidence too. Specifically, the rules 
  
   {beer -> apple, chips} 
    {chips -> apple, beer} 



  
would have low confidence as well. As before, lower level candidate item rules can be               
pruned using the apriori algorithm, so that fewer candidate rules need to be examined. 
 
 

4. Define the terms with proper example: Support  and confidence 

A consequent is an item that is found in combination with the antecedent. Association rules are                

created by analyzing data for frequent if/then patterns and using the criteria support and              

confidence to identify the most important relationships. Support is an indication of how             

frequently the items appear in the database. 

 

8. What is association analysis? Explain with example 

Association rule mining is a popular and well researched method for discovering interesting             

relations between variables in large databases. It is intended to identify strong rules discovered              

in databases using different measures of interestingness. Based on the concept of strong rules,              

RakeshAgrawal et al. introduced association rules. 

Problem Definition: The problem of association rule mining is defined as: 

Let be a set of binary attributes called items. 

Let be a set of transactions called the database. 

Each transaction in has a unique transaction ID and contains a subset of the items in . 

A rule is defined as an implication of the form 

whereand . 

The sets of items (for short itemsets) and are called antecedent (left-hand-side or LHS) and               

consequent (right-hand-side or RHS) of the rule respectively.To illustrate the concepts, we use a              

small example from the supermarket domain. The set of items is and a small database               

containing the items (1 codes presence and 0 absence of an item in a transaction) is shown in                  

the table. 

An example rule for the supermarket could be meaning that if butter and bread are bought,                

customers also buy milk. 

9.  List and explain factors affecting the complexity of Apriori algorithm 

 

12. Explain feature subset selection as away to reduce the dimensionality 

14.  Consider the following transaction data set: 



 
a) Construct FP tree 
b) Generate list of frequent item set ordered by their corresponding suffixes -12 

 
 
 
 
 
 
 
15. Find frequent item sets for the following table using Apriori algorithm: 
Minimum support= 3 
  
Transaction 
ID 

Items Bought 

T1 {M, O, N, K, E, Y } 
T2 {D, O, N, K, E, Y } 
T3 {M, A, K, E} 
T4 {M, U, C, K, Y } 
T5 {C, O, O, K, I, E} 
 Let’s start with a non-simple example, 
  

Transaction ID Items Bought 

T1 {Mango, Onion, Nintendo, Key-chain, Eggs, Yo-yo} 

T2 {Doll, Onion, Nintendo, Key-chain, Eggs, Yo-yo} 

T3 {Mango, Apple, Key-chain, Eggs} 

T4 {Mango, Umbrella, Corn, Key-chain, Yo-yo} 

T5 {Corn, Onion, Onion, Key-chain, Ice-cream, Eggs} 

  



Now, we follow a simple golden rule: we say an item/itemset is frequently bought if it is bought                  
at least 60% of times. So for here it should be bought at least 3 times. 
  
For simplicity 
M = Mango 
O = Onion 
And so on…… 
  
So the table becomes 
  
Original table: 

Transaction ID Items Bought 

T1 {M, O, N, K, E, Y } 

T2 {D, O, N, K, E, Y } 

T3 {M, A, K, E} 

T4 {M, U, C, K, Y } 

T5 {C, O, O, K, I, E} 

  
  
Step 1: Count the number of transactions in which each item occurs, Note ‘O=Onion’ is bought                
4 times in total, but, it occurs in just 3 transactions. 
  

Item No of 
transactions 

M 3 

O 3 

N 2 

K 5 

E 4 

Y 3 



D 1 

A 1 

U 1 

C 2 

I 1 

  
  
Step 2: Now remember we said the item is said frequently bought if it is bought at least 3 times.                    
So in this step we remove all the items that are bought less than 3 times from the above table and                     
we are left with 
  

Item Number of 
transactions 

M 3 

O 3 

K 5 

E 4 

Y 3 

  
  
This is the single items that are bought frequently. Now let’s say we want to find a pair of items                    
that are bought frequently. We continue from the above table (Table in step 2) 
  
Step 3: We start making pairs from the first item, like MO,MK,ME,MY and then we start with                 
the second item like OK,OE,OY. We did not do OM because we already did MO when we were                  
making pairs with M and buying a Mango and Onion together is same as buying Onion and                 
Mango together. After making all the pairs we get, 
  

Item pairs 

MO 



MK 

 ME 

MY 

OK 

OE 

OY 

KE 

KY 

EY 

  
  
Step 4: Now we count how many times each pair is bought together. For example M and O is                   
just bought together in {M,O,N,K,E,Y} 
While M and K is bought together 3 times in {M,O,N,K,E,Y}, {M,A,K,E} AND {M,U,C, K, Y} 
After doing that for all the pairs we get 
  

Item Pairs Number of 
transactions 

MO 1 

MK 3 

ME 2 

MY 2 

OK 3 

OE 3 

OY 2 

KE 4 



KY 3 

EY 2 

  
  
Step 5: Golden rule to the rescue. Remove all the item pairs with number of transactions less                 
than three and we are left with 
  

Item Pairs Number of 
transactions 

MK 3 

OK 3 

OE 3 

KE 4 

KY 3 

  
These are the pairs of items frequently bought together. 
Now let’s say we want to find a set of three items that are brought together. 
We use the above table (table in step 5) and make a set of 3 items. 
  
Step 6: To make the set of three items we need one more rule (it’s termed as self-join), 
It simply means, from the Item pairs in the above table, we find two pairs with the same first                   
Alphabet, so we get 
· OK and OE, this gives OKE 
· KE and KY, this gives KEY 
  
Then we find how many times O,K,E are bought together in the original table and same for                 
K,E,Y and we get the following table 
  

Item Set Number of 
transactions 

OKE 3 



KEY 2 

  
While we are on this, suppose you have sets of 3 items say ABC, ABD, ACD, ACE, BCD and                   
you want to generate item sets of 4 items you look for two sets having the same first two                   
alphabets. 
· ABC and ABD -> ABCD 
· ACD and ACE -> ACDE 
  
And so on … In general you have to look for sets having just the last alphabet/item different. 
  
Step 7: So we again apply the golden rule, that is, the item set must be bought together at least 3                     
times which leaves us with just OKE, Since KEY are bought together just two times. 
  
Thus the set of three items that are bought together most frequently are O,K,E. 
 
 
16. Explain Rule generation in Apriori algorithm with example (pseudocode  expected) 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


