
USN

Internal Assessment Test II – April 2018

Sub: Software Architectures Code: 10IS81

Date: 16-04-18 Duration: 90 mins Max Marks: 50 Sem: VIII Branch: ISE

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

 Marks

OBE

 CO RBT

1. Explain Layers Architecture pattern, with sketches and CRC cards. [10] CO3 L4

2. List the components of Pipes & Filters Architecture Pattern & depict the

dynamics behavior of it.

[10] CO3 L1,L3

3. List the steps to implement Blackboard pattern and Illustrate its behavior based on

Speech recognition.

[10] CO3 L1,L3

4. Define Broker Architecture pattern. Explain with a diagram the objects involved

in a Broker system.

[10] CO3 L1,L4

USN

Internal Assessment Test 1 – March 2018

Sub: Software Architectures Code: 10IS81

Date: 12-03-18 Duration: 90 mins Max Marks: 50 Sem: VIII Branch: CSE, ISE

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

 Marks

OBE

 CO RBT

1. Explain Layers Architecture pattern, with sketches and CRC cards. [10] CO3 L4

2. List the components of Pipes & Filters Architecture Pattern & depict the

dynamics behavior of it.
[10] CO3 L1,L3

3. List the steps to implement Blackboard pattern and Illustrate its behavior based on

Speech recognition.
[10] CO3 L1,L3

4. Define Broker Architecture pattern. Explain with a diagram the objects involved

in a Broker system.

[10] CO3 L1,L4

5. Explain the dynamics of MVC pattern [10] CO3 L4

6. Give the CRC cards for top level, intermediate level and bottom level PAC pattern

agents and explain in brief.

[10] CO3 L1,L4

7. Enumerate the Implementation of a Microkernel Pattern. [10] CO4 L2

5. Explain the dynamics of MVC pattern [10] CO3 L4

6. Give the CRC cards for top level, intermediate level and bottom level PAC pattern

agents and explain in brief.
[10] CO3 L1,L4

7. Enumerate the Implementation of a Microkernel Pattern. [10] CO4 L2

Scheme

Question # Description Marks Distribution Max Marks

1
Layers Architecture pattern Diagram.
Explanation & CRC cards

5M

5M

10M

10M

2

Pipes & Filters Architecture Pattern –
components
dynamics
explanation

3M

5M

2M

10M

10M

3
Blackboard pattern diagram
Explanation

5M

5M

10M

10M

4
Broker Architecture pattern Definition

Four diagrams & Explanation

2M

8M

10M

10M

5
MVC pattern explanation

Dynamics

2M

8M

10M

10M

6
PAC pattern – 3 Patterns

Representation

3 M each

1M

10M

10M

7 Microkernel Pattern
10M

10M

10M

Solution

1. LAYERS The layers architectural pattern helps to structure applications that can be decomposed into

groups of subtasks in which each group of subtasks is at a particular level of abstraction.

Example: Networking protocols are best example of layered architectures. Such a protocol consists

of a set of rules and conventions that describes how computer programmer communicates across

machine boundaries. The format, contacts and meaning of all messages are defined. The protocol

specifies agreements at a variety of abstraction levels, ranging from the details of bit transmission to

high level abstraction logic. Therefore the designers use secured sub protocols and arrange them in

layers. Each layer deals with a specific aspect of communication and users the services of the next

lower layer. (see diagram & explain more)

Context: a large system that requires decomposition.

Problem: THE SYSTEM WE ARE BUILDING IS DIVIDED BY MIX OF LOW AND HIGH

LEVEL ISSUES, WHERE HIGH-LEVEL OPERATIONS RELY ON THE LOWER-LEVEL

ONES. FOR EX, HIGH-LEVEL WILL BE INTERACTIVE TO USER AND LOW-LEVEL WILL

BE CONCERNED WITH HARDWARE IMPLEMENTATION.

 In such a case, we need to balance the following forces: Late source code changes should not

ripple through the systems. They should be confined to one component and not affect others. Interfaces

should be stable, and may even be impressed by a standards body. Parts of the system should be

exchangeable (i.e, a particular layer can be changed). It may be necessary to build other systems at a

later date with the same low-level issues as the system you are currently designing. Similar

responsibilities should be grouped to help understandability and maintainability. There is no ‘standard’

component granularity. Complex components need further decomposition. Crossing component

boundaries may impede performance, for example when a substantial amount of data must be transferred

over several boundaries. The system will be built by a team of programmers, and works has to be

subdivided along clear boundaries.

Solution: Structure your system into an appropriate number of layers and place them on top of each

other. Lowest layer is called 1 (base of our system), the highest is called layer N. i.e, Layer 1, …….

Layer J-1, Layer J, ….. Layer N. Most of the services that layer J Provides are composed of services

provided by layer J-1. In other words, the services of each layer implement a strategy for combining the

services of the layer below in a meaningful way. In addition, layer J’s services may depend on other services

in layer J.

Structure: An individual layer can be described by the following CRC card:

 The main structural characteristics of the layers patterns is that services of layer J are only use by layer J+1-

there are no further direct dependencies between layers. This structure can be compared with a stack, or

even an onion. Each individual layer shields all lower from direct access by higher layers.

In more detail, it might look something like this:

Dynamics: Scenario I is probably the best-known one. A client Issues a request to Layer N. Since Layer N

cannot carry out the request on its own. It calls the next Layer N - 1 for supporting subtasks. Layer N - I

provides these. In the process sending further requests to Layer N-2 and so on until Layer I is reached. Here,

the lowest-level services are finally performed. If necessary, replies to the different requests are passed back

up from Layer 1 to Layer 2, from Layer 2 to Layer 3, and so on until the final reply arrives at Layer N.

Scenario II illustrates bottom-up communication-a chain of actions starts at Layer 1, for example when a

device driver detects input. The driver translates the input into an internal format and reports it to Layer 2

which starts interpreting it, and so on. In this way data moves up through the layers until it arrives at the

highest layer. While top-down information and control flow are often described as 'requests'. Bottom-up

calls can be termed 'notifications'. Scenario III describes the situation where requests only travel through a

subset of the layers. A toplevel request may only go to the next lower level N- 1 if this level can satisfy the

request. An example of this is where level N- 1 acts as a cache and a request from level N can be satisfied

without being sent all the way down to Layer 1 and from here to a remote server. Scenario IV An event is

detected in Layer 1, but stops at Layer 3 instead of travelling all the way up to Layer N. In a communication

protocol, for example, a resend request may arrive from an impatient client who requested data some time

ago. In the meantime the server has already sent the answer, and the answer and the re-send request cross. In

this case, Layer 3 of the server side may notice this and intercept the re-send request without further action.

Scenario V involves two stacks of N layers communicating with each other. This scenario is well-known

from communication protocols where the stacks are known as 'protocol stacks'. In the following diagram,

Layer N of the left stack issues a request. 'The request moves down through the layers until it reaches Layer

1, is sent to Layer 1 of the right stack, and there moves up through the layers of the right stack. The response

to the request follows the reverse path until it arrives at Layer N of the left stack.

2. The pipes and filter’s architectural pattern provides a structure for systems that process a stream of

data. Each processing step is encapsulated in a filter component. Data is passed through pipes

between adjacent filters. Recombining filters allows you to build families of related systems.

 Example: Suppose we have defined a new programming language called Mocha [Modular Object

Computation with Hypothetical Algorithms]. Our task is to build a portable compiler for this language.

To support existing and future hardware platforms we define an intermediate language AuLait [Another

Universal Language for Intermediate Translation] running on a virtual machine Cup (Concurrent

Uniform Processor). Conceptually, translation from Mocha to AuLait consists of the phases lexical

analysis, syntax analysis, semantic analysis, intermediate-code generation (AuLait), and optionally

intermediate-code optimization. Each stage has well-defined input and output data.

 Context: Processing data streams.

Problem: Imagine you are building a system that must process or transform a stream of input data.

Implementing such a system as a single component may not be feasible for several reasons: the system has

to be built by several developers, the global system task decomposes naturally into several processing

stages, and the requirements are likely to change. The design of the system-especially the interconnection of

the processing steps-has to consider the following forces: Future system enhancements should be possible by

exchanging processing steps or by recombination of steps, even by users. Small processing steps are easier

to reuse in different contexts than larger contexts. Non-adjacent processing steps do not share information.

Different sources of input data exists, such as a network connection or a hardware sensor providing

temperature readings, for example. It should be possible to present or store the final results in various ways.

Explicit storage of intermediate results for further processing the steps, for example running them in parallel

or quasi-parallel. You may not want to rule out multi-processing the steps

Solution: The pipes and filters architectural pattern divides the task of a system into several sequential

processing steps (connected by the dataflow through the system). Each step is implemented by a filter

component, which consumes and delivers data incrementally to achieve low battery and parallel processing.

 The input to a system is provided by a data source such as a text file. The output flows into a data sink

such as a file, terminal, and so on. The data source, the filters, and the data sink are connected sequentially

by pipes. Each pipe implements the data flow between adjacent processing steps. The sequence of filters

combined by pipes is called a processing pipeline.

 Structure: Filter component: o Filter components are the processing units of the pipeline. o A filter enriches,

refines or transforms its input data. It enriches data by computing and adding information, refines data by

concentrating or extracting information, and transforms data by delivering the data in some other

representation. o It is responsible for the following activities: The subsequent pipeline element pulls output

data from the filter. (passive filter)

The previous pipeline element pushes new input data to the filter. (passive filter) Most commonly, the filter

is active in a loop, pulling its input from and pushing its output down the pipeline. (active filter)

3. The blackboard architectural pattern is useful for problems for which no deterministic solution

strategies are known. In blackboard several specialized subsystems assemble their knowledge to

build a possibly partial or approximate solution.

4.

5. Example: Consider a software system for speech recognition. The input to the system is speech

recorded as a waveform. The system not only accepts single words, but also whole sentences that are

restricted to the syntax and vocabulary needed for a specific application, such as a database query.

The desired output is a machine representation of the corresponding English phrases.

6.

7.

8. Context: An immediate domain in which no closed approach to a solution is known or feasible

9.

10. Problem: A blackboard pattern tackle problems that do not have a feasible deterministic solution

for the transformation of raw data into high level data structures, such as diagrams, tables, or English

phrases. Examples of domains in which such problems occur are:- vision, image recognition, and

speech recognition. They are characterized by problems that when decomposed into sub problems,

spans several fields of expertise. The Solution to the partial problems requires different

representations and paradigm.

11. The following forces influence solutions to problems of this kind: A complete search of the

solution space is not feasible in a reasonable time. Since the domain is immature, we may need to

experiment with different algorithms for the same subtask. Hence, individual modules should be

easily exchangeable. There are different algorithms that solve partial problems. Input as well

as intermediate and final results, have different representation, and the algorithms are implemented

according to different paradigms. An algorithm usually works on the results of other algorithms.

Uncertain data and approximate solutions are involved. Employing dis fact algorithms

induces potential parallelism.

12.
13. Solution: The idea behind the blackboard architecture is a collection of independent programs that

work co operatively on a common data structure. Each program is meant for solving a particular

part of overall task. These programs are independent of each other they do not call each other, nor

there is a predefined sequence for their activation. Instead, the direction taken by the system is

mainly determined by the current state of progress. A central control component evaluates the

current state of processing and coordinates these programs. These data directed control regime is

referred to as opportunistic problem solving. The set of all possible solutions is called solution

space and is organized into levels of abstraction. The name 'blackboard’ was chosen because it is

reminiscent of the situation in which human experts sit in front of a real blackboard and work

together to solve a problem. Each expert separately evaluates the current state of the solution, and

may go up to the blackboard at any time and add, change or delete information. Humans usually

decide themselves who has the next access to the blackboard.

14.
15. Structure: Divide your system into a component called a blackboard, a collection of knowledge

sources, and a control component. Blackboard: o Blackboard is the central data store. o Elements

of the solution space and control data are stored here. o Set of all data elements that can appear on

the blackboard are referred to as vocabulary. o Blackboard provides an interface that enables all

knowledge sources to read form and write to it. o We use the terms hypothesis or blackboard entry

for solutions that are constructed during the problem solving process and put on the blackboard. o A

hypothesis has several attributes, ex: its abstraction level.

16. dge applications strategy. The basis for this strategy is the data on the blackboard.

o The following figure illustrates the relationship between the three components of the blackboard

architecture.

Knowledge source calls inspect()to check the current solutions on the blackboard Update() is

used to make changes to the data on the blackboard Control component runs a loop that

monitors changes on the blackboard and decides what actions to take next. nextSource() is

responsible for this decision.

17.
18. Dynamics: The following scenario illustrates the behavior of the Blackboard architecture. It is based

on our speech recognition example: The main loop of the Control component is started.

Control calls the nextsource () procedure to select the next knowledge source. nextsource ()

first determines which knowledge sources are potential contributors by observing the blackboard.

 nextsource() invokes the condition-part of each candidate knowledge source. The Control

component chooses a knowledge source to invoke, and a hypothesis or a set of hypotheses to be

worked on.

Implementation: Define the problem pecify the domain of the problem Scrutinize the input to

the system Define the o/p of the system Detail how the user interacts with the system. Define

the solution space for the problem Specify exactly what constitutes a top level solution List the

different abstraction levels of solutions Organize solutions into one or more abstraction

hierarchy. Find subdivisions of complete solutions that can be worked on independently.

Divide the solution process into steps. Define how solutions are transformed into higher level

solutions. Describe how to predict hypothesis at the same abstraction levels. Detail how to

verify predicted hypothesis by finding support for them in other levels. Specify the kind of

knowledge that can be uses to exclude parts of the solution space. Divide the knowledge into

specialized knowledge These subtasks often correspond to areas of specialization. Define the

vocabulary of the blackboard Elaborate your first definition of the solution space and the abstraction

levels of your solution. Find a representation for solutions that allows all knowledge sources to read

from and contribute to the blackboard. The vocabulary of the blackboard cannot be defined of

knowledge sources and the control component. Specify the control of the system. Control

component implements an opportunistic problem-solving strategy that determines which knowledge

sources are allowed to make changes to the blackboard. The aim of this strategy is to construct a

hypothesis that is acceptable as a result. The following mechanisms optimizes the evaluation of

knowledge sources, and so increase the effectiveness and performance of control strategy.

Classifying changes to the blackboard into two types. One type specify all blackboard change that

may imply new set of applicable knowledge sources, and the other specifies all blackboard changes

that do not. Associating categories of blackboard changes with sets of possibly applicable knowledge

sources. Focusing of control. The focus contains either partial results on the blackboard or

knowledge sources that should be preferred over others. Creating on queue in which knowledge

sources classified as applicable wait for their execution. Implement the knowledge sources

Split the knowledge sources into condition parts and action-parts according to the needs of the

control component. We can implement different knowledge sources in the same system using

different technologies

Variants: Production systems: used in oops language. Here the subroutines are represented as

condition-action rules, and data is globally available in working. Repository: it is a generalization of

blackboard pattern the central data structure of this variant is called a repository.

19.

