m‘aﬁms *,

§ CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU,

N0,132, AECS Layout
IT Park 1, Bangalore 560 037
T: +91 80 28524466/77, F - +91 80 28524630

SRADE BT IAAC E Info@cmracin | www.cmrac.in

DEPARTMENT OF COMPUTER SCIENCE

Operating Systems (15CS64)
Internal Assessment Test — 3
Question paper Solution

1. Consider the following snapshot of a system:

Allocation Max Available
A B| C D/ A/ B|C|D|A B |C|D
PO 0 o1 /2]0]0]12]1]5]21]0
P1 1 O/ o0]O0|1]|7]|5]0
P2 1 3051412 (3]|5]6
P3 0 6 |32]0|6]|5]2
P4 0 O] 1] 4]0|]6]|5]6

1) Find out need matrix.
i1) If a request from process P1 arrived for (0,4,2,0) can the request be granted immediately?
ii1) Is the system is in safe state.

4(b) For the given snapshot :
| Allocation Max Available
1A €C D AB C D A B C D
Pl 1]s12]0]
"2]
] AEAEYE 3
P4] | |
PS 4 |]
Using Banker's algorithm:
D] is the need matrix content?
ii) Is the system in safe state?
iii) If a request from process P2(0,4,2,0) arrives, can it be granted? (10 Marks)
Ans:
Solution (1):

« The content of the matrix Need 1S glven by
Need « Max - Allocation

« So, the content of Need Matrix is:

Solution (ii):

2D oivw

|64

(
« Applying the Safety algorithm on the glven system,
Step 1: Initalization

Step 2:

Step 3:

Step 2:

Step 2:

Step 3:

Step 2:

Step 3:

Step 2:

Step 3:

Step 2:

Step 3:

Step 4:

Work = Availabie i.e. Work =1 520

POON 5 UOHURL. J . S N . oo
Finish = | false | false | false | false | false |

Fori=1
Finish[P1) = false and Neeqvl|<-wm: 1£.(0000)<«(1520) 9 true
So PL must be kept in safe sequenc
Werk = Work + Allocation[P1] (1 s 20)4(0012)=(1532)
OO 5 R . . WO - T

Finish = [true | faise | false | false | false |

Fori=2
Finish[P2) = false and Need(P2)<=Wiork i.e. (0 75 2)<=(15 3 2) & false
So P2 must wait

For |=3

Finish[P3) = false and Nﬂd’!k-work le. (100 2)<=(1532) > true

So P3 must be kept in safe

Work = Work + Alouoon(v:n - u s: 2)4(1354)=(2886)
PP P PO BS,

Finish = | true | faise | true | faise | fajse |

For |=4
Finish[P4] = false and quNk-Wont i2.(0020)<=(288 6) > true
So P4 must be kept in safe sequ
Work = Work + Nloauon("l -(1 886)+(0632)=(214 11 8)
JOON 2 VIO - SO o SRS . WO

Finish = | true | folse | true | true | false |

For |=S

Finish[PS) = false and quPS]<-Waml.n (064 2)<=(214 118) S true

So P5 must be kept in safe sequenc

Work = Work + Allocation[P5] =(2 14 11 8)+(0014)=(2 14 1212)
P4.LP5..

Finish = | true |
Fori=2
Finish{P2] = false and mequ]uwm 1e.(0752) <=(214 12 12) & troe
So P2 must be kept in safe seque
Work = Work + Nloa:w(?zl -(2 14 12 12)4{1 00 0)=(3 14 1212)
amaP PR PP PS
Finish = | true | true | trye | true | true |

Finish{P|] = true for 1<=i<=5
Hence, the system is currently in & safe state.

The safe sequence is <P1, P3, P4, PS, P2>.

Conclusion: Yes, the system is currently in a safe state.

(H:

P2 req (0420) le (P2)=0420

* To decide whether the request is granted, we use Resource Request algonthm.

Step 1:
Step 2:
Step 3:

R-quuumuueuam) L.e. (o 420) <= (0752) S true.
Request{P2]<-Available i.e. (0420) <= (1520) true.
i 2] = (1520)-(0420)=(1100]

Need(P2] = Need(P2) -

L 2] = P2] + "’1~(1000)*(0:20)-(1420)
Request{P2] = (0752)- (04 20)=(0332)

* We arrive at the following new system state

2. For the following page reference calculate the page fault that occur using FIFO, LRU and

Allocation ax Avallable
A B C D A C D A B C D
1.,1]0]0

{
|

DO WO By

3233
olovw &

* The content

of the matrix Need 15 given by

Need = Max - Alfocation

« So, the content of Need Matrix is:

e
wlolwlo
~Noo
I

olowoo»

* Applying the Safety algorithm on the given system,

Step 1:

Step 2:

Step 3:

Step 2:

Step 2:

Step 3:

Step 2:

Step 3:

Step 2:

Step 3:

Step 2:

Step 3:

Step 4:

Initialzation
Wolk-hvdlaunc Work =1100
PRl P3PS,
Finish = LWJHSJMJ

Fori=1
Finish{P1] = false and NﬂdPlk-Vhlﬁ 12.(0000)<=(1100) true
So P1 must be kept in safe

sequenc
Work = Work + NIoaﬁm(Fl) -(l l 00)+(0 012)=(1112)
P1 P2..
Finizh =
Fori=2

Finish[P2] = false and Need[P2]<=Work i.e. (0 33 2)<=(11 1 2) Dfalse
So P2 must wait.

Fori=3
Finish[P3] = false and Need[P3]<=Work i.e. (100 2)<=(11 12) P true
So P3 must be kept in safe se

quence.
Work = Work + Allocation[P3] = (111 2)+(1354)=(2466)
P1..P2 P3...P4 PS,
Finish =
For i=4

Finish[P4) = false and Need(Pd]<=Work |.e. (0 02 0)<=(24 6 6) S true
So P4 must be kept in safe sequence.
Work = Work + Allocation[P4) -(14 66)+(0632)=(21098)

FAPS 2 VRPN 2 oo o JoN .
Finish = | true | false | true | true | (ol |
For =5

Finish{PS] = false and M(’SF'WM 1e. (064 2)<=(21098) & true
S0 P5 must be kept In safe

sequence.
Work = Work + Allocation[PS) -(z xos B)4(0014)=(2101012)
P P2 P2
Finich =
For i=2

Finish[P2] = false and Mt?zk-wmt e (0332)<=(21010 12) P true
So P2 must be kept in safe se
Work = Work + nlonnm(vz] =(2 xo 10 12)4{1 4 2 0)=(3 14 12 12)

JOVS) VOO - R . T T . T

Finish = | true | true | true | troe | true |
Finish{Pi] = true for D<wi<wed

Hence, the system is currently in a safe state.
The safe sequence Is <P1, P3, P4, PS, P2>,

Conclusion: Since the system s (n safe sate, the request can be granted.

optimal for 3 and 4 frames respectively. 5,4,3,2,1,4,3,5,4,3,2,1,5.

5(c) For the following page reference, calculate the page faults that occur using FIFO

and LRU for 3 and 4 page frames respectively

54,321,4,3,54,3,2,1,5. (10 Marks)

(1) LRU with 3 frames:

5

v

1

viv

3.2

4

1151515121212

1](4]3][5

S1Z2121213131313131318

3(313 (44|44 14ala(11

414141111

574312

515

Frames

No. of Pagefaults |V |V |V IV IV |VIVI[V

Ans:

5_25—311\
1_24 M| >
2_24 min| >
™|~ mn
<t~ min
|~ M=
o | M
i halh d il
| |
~Njnj< MmN
3_5_43 >
45_4 B
n|in >
-
=
g pe
m1}34M
111

No of page faults=11
(il) LRU with 4 frames:

ol el
>
zZSBT
mjinm T
oM+
njnm s>
™| v l_lv
44....7&v
wi| vt i >
NN
mmien >
| thn >
| Ea
8
N 8
m12_3.m1
€l
E

1 /5|43

2

VIVIVIVIVIY

3.5

3

54|44 |3

Si1413]13]312]1115]14 3|2

S5i|4131212]211[151413)21

5/4/3/2|1|4

5141312111111

(iil) LRU with 4 frames::

No of page faults=9

Frames

No.of Page faults |V | VIV V[V

No of page faults=10
(iv) FIFO with 4 frames:

No of page faults=11

3. Consider the following set of process with arrival and burst time.

A larger

riority number has a highest priority
Jobs Arrival Burst Priority
Time ms | Time ms
J1 0 6 4
J2 3 5 2
J3 3 3 6
J4 5 5 3

Draw the Gantt chart and calculate waiting time and turnaroundtime using 1)FCFS 1ii) SJF
111)SRTF 1v) priority v) Round Robin (Q=3)

AnsGers:
LRSS

Hren Net. TAT
) 1) FCFS Avg. Py B A 9
T =0-0=0 Fns €= e HIHYTIY

= | J o T T4 T\B_U‘B"-g)-fq:“‘._g‘:q‘ 4
o P "] = — o+ 348 vad)/4 = |25
= &
W) 6T F (Noo- prem s Asg. Cood¥nq Hme Aug. TAT
Ji=0-0=0 _TJ2=a-8=¢ = ct+a+ld+ 19
= IS q L) 9 =y 0 +G +2 +9 = =
L'
= -
I Aug. Cuoitirg o Avg: z‘q:‘; =
M) sRTF (Peemp¥ive) S, = 6-3-0=Q,Tp=9-3=C '5; =q(; =6 T2=14
= = I s |
e In [z [l mesesemenss NN,
P 3 < q 14 19 = 2+ o019 -—-—T———
4 :_ = il.2s5
5 Pty Aug. ooaiting v Avg. TAT.
|V)__fj_\3.-§-f"1 o = n_c,:o;;—ﬂﬂp-z;q -
3“‘2__=-'€--’3=¢, y = 1e-5=1) —_—
Yl -3".2. Tu | J= 4
L => ©+34+9+1
e c u e a9 — = 13
= .0
v) Round -RobM
| s d A el i
o RN
b a e a = =y Ly} 19
L
A\;a, CA.DM'_]'?'ﬁi “+5ere . A\‘C[i- TA .
0 o= 1§—8=2, Te=1T->=14
T =\2-2 = 9_Ta =)5-23-2= 9) -
Tz = 6- 3=2, Th= |7-9-5=3 TJaz=9 ,Jy =19-V2="]

= 942 +9 33 12+ 9 1M+
— ____——-—""-“
—eeeeeee L,

Yy

- |O-5
= & {

4. Suppose that the disk drive has 5000 cylinders numbered from O to 4999. The drive is
currently serving a request at cylinder 143, and the previous request was at cylinder 125. The
queue of pending requests in FIFO order is 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130.
Starting from the current(location) head position, What is the total distance(in cylinders) that
the disk arm moves to satisfy all the pending requests, for each of the following disk-
scheduling algorithms? 1) FCFS i1) SSTF 1i11))SCAN 1v)LOCK v) C-SCAN

7(s) Suppose that the disk drive has 5000 cylinders numbered from 0 to 4999. The
drive is Y g & requ: at 143, and the previous request was at
cylinder 125. The queue of pending requests in FIFO order is 86, 1470, 913, 1774, 948,

to satisfy all the
for each of the disk-scheduling algorithms? (15 Marks)
(1) FCFS; (i) SSTF; (il) SCAN; (Iv) LOCK; (v) C-SCAN

mscmmm:mmn&anm i59769.

oy y
EL) o6 2
L 4% 18
0 ”) 87
3 M [
7 " 2
e 1509 581
1508 w2 457 -
3022 1750 28
750 120 1620
Totsl Seek Time 7088 For LOOK schedule, the total seek distance is 3319.
v) C-SCAN

For FOFS schedule, the total seek distance Is 7081.

Far SSTF schadibs, the b wesk dictanen is 1745 TorC SCAN s:hedule, the total seck distance i3 9013,

PART - B (choose any 4 questions from this part) [5%4 =20]

5. What are the major methods used for allocating a disk space? Explain each with suitable
examples.

Allocation Methods
* The direct-access nature of disks allows us flexibility in the implementation of files.

* In almost every case, many files are stored on the same disk.
* Main problem:

How to allocate space to the files so that

— disk-space is utilized effectively and

— files can be accessed quickly.

* Three methods of allocating disk-space:

1. Contiguous

2. Linked and

3. Indexed

* Each method has advantages and disadvantages.

* Some systems support all three (Data General's RDOS for its Nova line of computers).
Contiguous Allocation

* Each file occupies a set of contiguous-blocks on the disk (Figure 6.17).

* Disk addresses define a linear ordering on the disk.

* The number of disk seeks required for accessing contiguously allocated files is minimal.
* Both sequential and direct access can be supported.

* Problems:

1. Finding space for a new file

_ _External fragmentation can occur.

2. Determining how much space is needed for a file.

o= = diralory
e TR g FH alia B
et 1;+] mbart o

ol =d |al | ool a =
. ._J" — tr 14 a
Al 5L &L g il 19 (5]
Ei__ E:_E |l:|_| I |i__! hHar =8 =1
ir i =] b

121 J1al_lrsil sl

F6CF17 18l 1G]
= s —
o= Je=i J2al]

zal Josl joa] lor] |

list
sal deel Jaailai_d

=,

— =

Fig : Contiguous allocation of disk-space

_ _If you allocate too little space, it can't be extended.

Two solutions:

1) The user-program can be terminated with an appropriate error-message. The user must then
allocate more space and run the program again.

i1) Find a larger hole,

copy the contents of the file to the new space and release the previous space.

* To minimize these drawbacks:

1. A contiguous chunk of space can be allocated initially and

2. Then when that amount is not large enough, another chunk of contiguous space

(known as an ‘extent’) is added.

Figure 6.17 Contiguous allocation of disk-space

Linked Allocation

* Each file is a linked-list of disk-blocks.

* The disk-blocks may be scattered anywhere on the disk.

* The directory contains a pointer to the first and last blocks of the file (Figure 6.18).

* To create a new file, just create a new entry in the directory (each directory-entry has a
pointer to the disk-block of the file).

1. A write to the file causes a free block to be found. This new block is then written to and
linked to the eof (end of file).

2. A read to the file causes moving the pointers from block to block.

» Advantages:

1. No external fragmentation, and any free block on the free-space list can be used to satisfy a
request.

2. The size of the file doesn't need to be declared on creation.

3. Not necessary to compact disk-space.

* Disadvantages:

1. Can be used effectively only for sequential-access files.

2. Space required for the pointers.

Solution: Collect blocks into multiples (called ‘clusters’) & allocate clusters rather than
blocks.

3. Reliability: Problem occurs if a pointer is lost(or damaged).

Partial solutions: 1) Use doubly linked-lists.

cgaraciory
e et file start end
|eep 2] 25

12[_nal 4l sl]
sallsrCheHed

o0 lod[ool Al]

24 JesERas[127

2a! lep e[

e,

Fig : Linked allocation of disk-space

i1) Store file name and relative block-number in each block.
Figure 6.18 Linked allocation of disk-space Figure 6.19 File-allocation table
* FAT is a variation on linked allocation (FAT=File Allocation Table).

* A section of disk at the beginning of each partition is set aside to contain the ¢ The table
— has one entry for each disk-block and

— 1s indexed by block-number.

* The directory-entry contains the block-number of the first block in the file.

* The table entry indexed by that block-number then contains the block-number of the next
block in the file.

* This chain continues until the last block, which has a special end-of-file value as the table
entry.

» Advantages:

1. Cache can be used to reduce the no. of disk head seeks.

2. Improved access time, since the disk head can find the location of any block by reading the
info in the FAT.

Indexed Allocation

* Solves the problems of linked allocation (without a FAT) by bringing all the pointers
together into an

index block.

* Each file has its own index block, which is an array of disk-block addresses.

* The ith entry in the index block points to the ith file block (Figure 6.20).

* The directory contains the address of the index block.

direcinny

file e Dicck
eep 18
}

Fig : Indexed allocation of disk space
* When the file is created, all pointers in the index-block are set to nil.
* When writing the ith block, a block is obtained from the free-space manager, and its address
put in
the ith index-block entry,
* Problem: If the index block is too small, it will not be able to hold enough pointers for a
large file,

6. Explain briefly the access matrix with domains as objects.

Access Matrix

_ The model of protection that we have been discussing can be viewed as an access matrix,
in which columns represent different system resources and rows represent different protection
domains. Entries within the matrix indicate what access that domain has to that resource.

object
> F, — ~ printer
domain

D, read read
D, print
D read execute
D read read

4 write write

Domain switching can be easily supported under this model, simply by providing "switch"
access to other domains:

ebject | = = Fs asatil . D, D, D,
domain printer
D, read read switch
D, print switch | switch
Dy read |execute
D, \:f/ar?tde :f'?tg switch

Figure 14.4 - Access matrix of Figure 14.3 with domains as objects.

_ The ability to copy rights is denoted by an asterisk, indicating that processes in that domain
have the right to copy that access within the same column, i.e. for the same object. There are
two important variations:

o If the asterisk is removed from the original access right, then the right is transferred, rather
than being copied. This may be termed a transfer right as opposed to a copy right.

o If only the right and not the asterisk is copied, then the access right is added to the new
domain, but it may not be propagated further. That is the new domain does not also receive the

right to copy the access. This may be termed a limited copy right, as shown in Figure 14.5
below:

object

= F s
domain
D, execute write™
D, execute read” execute
Dy execute
(a)
object
Lo F s
domain
D, execute write*
D, execute read* execute
D, execute read

(b)

Figure 14.5 - Access matrix with copy rights.
_ The owner right adds the privilege of adding new rights or removing existing ones:

object
; = ~ e
domain
2 e write
» read”
D, (; ?v"":‘der owner
write
D, execute
(a)
object
- L F F5
domain
2 il wiite
owner read”
D, read* owner
write™ write
D, write write

(b)

Copy and owner rights only allow the modification of rights within a column. The addition of
control rights, which only apply to domain objects, allow a process operating in one domain
to affect the rights available in other domains. For example in the table below, a process
operating in domain D2 has the right to control any of the rights in domain D4.

object
: 2 = F |laser | p D, D, D,
domain printer
Dy read read switch
: : swiich
D, print switch | Z "o
Dy read |execute
D, write write switch

7. What do you mean by a free space list? With suitable examples, explain any 2 methods of
implementation of a free space list.

* A free-space list keeps track of free disk-space (i.e. those not allocated to some file or
directory).

* To create a file,

1. We search the free-space list for the required amount of space.

2. Allocate that space to the new file.

3. This space is then removed from the free-space list.

* To delete a file, its disk-space is added to the free-space list.

Bit Vector

* The free-space list is implemented as a bit map/bit vector.

* Each block is represented by a bit.

1. If the block is free, the bit is 1.

2. If the block is allocated, the bit is O.

* For example, consider a disk where blocks 2, 3, 4, 5 and 7 are free and the rest of the blocks
are allocated. The free-space bit map will be 00111101

» Advantage:

1. Relative simplicity & efficiency in finding the first free block, or ‘n’ consecutive free
blocks.

* Disadvantages:

1. Inefficient unless the entire vector is kept in main memory.

2. The entire vector is written to disc occasionally for recovery.

Linked List

* The basic idea:

1. Link together all the free disk-blocks (Figure 6.21).

2. Keep a pointer to the first free block in a special location on the disk.

3. Cache the block in memory.

* The first block contains a pointer to the next free one, etc.

* Disadvantage:

1. Not efficient, because to traverse the list, each block 1s read.

* Usually the OS simply needs a free block, and uses the first one.

Grouping

* The addresses of n free blocks are stored in the 1st free block.

* The first n-1 of these blocks are actually free.

* The last block contains addresses of another n free blocks, etc.

» Advantage:

1. Addresses of a large no of free blocks can be found quickly.

Counting

* Takes advantage of the fact that, generally, several contiguous blocks may be allocated/freed
simultaneously.

* Keep the address of the first free block and the number ‘n’ of free contiguous blocks that
follow the first block.

* Each entry in the free-space list then consists of a disk address and a count.

8. Discuss the directory implementation using a) Linear List b) Hash table.

Directory Implementation

1. Linear-list

2. Hash-table

Linear List

* A linear-list of file-names has pointers to the data-blocks.

* To create a new file:

1. First search the directory to be sure that no existing file has the same name.
2. Then, add a new entry at the end of the directory.

* To delete a file:

1. Search the directory for the named-file and

2. Then release the space allocated to the file.

* To reuse the directory-entry, there are 3 solutions:

1. Mark the entry as unused (by assigning it a special name).

2. Attach the entry to a list of free directory entries.

3. Copy the last entry in the directory into the freed location & to decrease length of directory.
* Problem: Finding a file requires a linear-search which is slow to execute.
Solutions:

1. A cache can be used to store the most recently used directory information.

2. A sorted list allows a binary search and decreases search time.

* Advantage:

1. Simple to program.

* Disadvantage:

1. Time-consuming to execute.

Hash Table

* A linear-list stores the directory-entries. In addition, a hash data-structure is also used.
* The hash-table

— takes a value computed from the file name and

— returns a pointer to the file name in the linear-list.

» Advantages:

1. Decrease the directory search-time.

2. Insertion & deletion are easy.

* Disadvantages:

1. Some provision must be made for collisions i.e. a situation in which 2 file-names hash to
the same location.

2. Fixed size of hash-table and the dependence of the hash function on that size.

9. Discuss the steps in handling a page fault, with the help of a neat diagram.

Steps in handling a page-fault

@ bacing sior
backing store ©
operafing
systom @
rd%e)nce trap
load M | * [
restart page table
instruction
free frame - |
reset page bring in
table missing page
physical
mamory

Fig : Steps in handling a page-fault

A page-fault occurs when the process tries to access a page that was not brought into

memory.
* Procedure for handling the page-fault (Figure)

Steps:

Steps 1. Check an internal-table to determine whether the reference was a valid or an invalid
memory access.

Steps 2. If the reference is invalid, we terminate the process.If reference is valid, but we have
not yet brought in that page, we now page it in.

Steps 3. Find a free-frame (by taking one from the free-frame list, for example).

Steps 4. Read the desired page into the newly allocated frame.

Steps 5. Modify the internal-table and the page-table to indicate that the page is now in
memory.

Steps 6. Restart the instruction that was interrupted by the trap.

10. Explain the different IPC mechanism available in LINUX.

Interprocess Communication

e Like UNIX, Linux informs processes that an event has occurred via signals

e There is a limited number of signals, and they cannot carry information:

e Only the fact that a signal occurred is available to a process

e The Linux kernel does not use signals to communicate with processes with are running
in kernel mode, rather, communication within the kernel is accomplished via scheduling
states and wait.queue structures

Passing Data Between Processes

e The pipe mechanism allows a child process to inherit a communication channel to its
parent, data written to one end of the pipe can be read at the other.

e Shared memory offers an extremely fast way of communicating; any data written by
one process to a shared memory region can be read immediately by any other process
that has mapped that region into its address space

e To obtain synchronization, however, shared memory must be used in conjunction with
another Interprocess-communication mechanism

Shared Memory Object

e The shared-memory object acts as a backing store for shared-memory regions in the
same way as a file can act as backing store for a memory mapped memory region

e Shared-memory mappings direct page faults to map in pages from a persistent shared-
memory object

e Shared-memory objects remember their contents even if no processes are currently

mapping them into virtual memory

11. Write short notes on process scheduling and kernel synchronization.

Process Scheduling (Cont)
| Linux uses two process-scheduling algorithms:
| A time-sharing algorithm for fair preemptive scheduling between
multiple processes
| A real-time algorithm for tasks where ea e a go o as s e e absolute priorities are more
important than fairness
| A process’s scheduling class defines which algorithm to apply
"I For time-sharing processes, Linux uses a prioritized, credit based
algorithm
The crediting rule
priority
2
credits := credits + factors in both the process’s history and its priority
| This crediting system automatically prioritizes interactive or [/Obound
processes
" Linux implements the FIFO and round-robin real-time scheduling classes; in
both cases, each process has a priority in addition to its scheduling class
The scheduler runs the process with the highest priority; for equalpriority
processes, it runs the process waiting the longest
FIFO processes continue to run until they either exit or block
A round-robin process will be preempted after a while and moved to the
end of the scheduling queue, so that round-robing processes of equal
priority automatically time-share between themselves

kernel synchronization

To avoid performance penalties, Linux’s kernel uses a synchronization
architecture that allows long critical sections to run without having interrupts
disabled for the critical section’s entire duration
"I Interrupt service routines are separated into a top half and a bottom half.
The top half is a normal interrupt service routine, and runs with
recursive interrupts disabled
The bottom half is run, with all interrupts enabled, by a miniature
scheduler that ensures that bottom halves never interrupt themselves

| This architecture is completed by a mechanism for disabling selected
bottom halves while executing normal, foreground kernel code

