
CMR

INSTITUTE OF
TECHNOLOGY

USN

Third Internal Test

Sub: File Structures Code: 15IS62

Date: 21/ 05 / 2018 Duration: 90 mins Max Marks: 50 Sem: VI Branch: ISE

Answer Any FIVE FULL Questions

 Marks

OBE

CO RBT

1 (a) What are the properties of B-Tree? Explain deletion, merging and redistribution

of elements on B-Tree with suitable example.
[10]

CO3 L2

Ans: For a Btree of order m, Btree has the following properties.

1. Every page has a maximum of m children.

2. Every page, except for the root and the leaves, has a minimum of m/2 children

3. The root has a minimum of 2 children (unless it is a leaf).

4. All of the leaves are on the same level

5. The leaf level forms a complete, ordered index of the associated data file.

Example for deletion, merging and redistribution.

2 (a) With a neat diagram, explain simple prefix B+ Tree and its maintenance. [10] CO3 L2

Ans:

Btree indexset taken together with sequence set forms a file structure called a

simple prefix B+ tree. The modifier simple prefix indicates that the index set

contains shortest separators or prefixes of the keys rather than copies of the actual

key.

Maintenance:

1. Changes Localized to Single Blocks in the Sequence Set

Additions, deletions, and updates in the sequence set which affect only a single

block do not affect the index set.

2. Changes involving multiple blocks in the sequence set

When addition to the sequence set results in split in the sequence set,

deletion in sequence set which results in merger, or changes in sequence set

resulting in redistribution requires involvement of more than one block set

and corresponding changes in the index set as well.

3 (a) Show the step by step construction of B-Tree of order four that results from

loading the following set of keys in order:

CSDAMPIBWNGURKE

[10]

CO3 L3

4 (a) Suppose there are 1000 addresses allocated to hold 800 records in a randomly

hashed file and that each address can hold one record. Compute the following

values:

i) The packing density

ii) The expected number of addresses with no records assigned to them.

iii) The expected number of addresses with exactly one record assigned.

iv) The expected number of addresses with one or more synonyms

v) The expected number of overflow records

[10]

CO4,

CO5

L3

Ans: i) Packing density:

 800/1000=0.8

ii) P(0)= (0.8)0 X e-(0.8)/0!= .449*1000=449

iii) P(1)= (0.8)1 X e-(0.8)/1!=.313*1000=313

iv) P(2)= (0.8)2 X e-(0.8)/2!=.095*1000=95

P(3)= (0.8)3 X e-(0.8)/3!=.038*1000=38

P(4)= (0.8)4 X e-(0.8)/4!=0.007*1000=7

P(5)= (0.8)5 X e-(0.8)/5!=0.001*1000=1

address with one or more synonyms=95+38+7+1=141

v) (95*1)+(38*2)+(3*7)+(1*4)=196

 5 (a) With a neat diagram, explain paged binary trees. What are its advantages and

disadvantages? [10]
CO3 L2

Ans:

AVL trees tackle the problem of keeping an index in sorted order cheaply. They

do not address the problem regarding the fact that Binary Searching requires too

many seeks.

Paged Binary trees addresses this problem by locating multiple binary nodes on

the same disk page.

In a paged system, you do not incur the cost of a disk seek just to get a few

bytes. Instead, once you have taken the time to seek to an area of the disk, you

read in an entire page from the file.

Adv: When searching a Binary Tree, the number of seeks necessary is

log2(N+1). It is logk+1(N+1) in the paged version.

Dis Adv: Balancing a paged binary tree can involve rotations across pages,

involving physical movement of nodes.

6 (a) Explain B-Tree methods for search() and findleaf() with necessary C++ code. [10] CO3 L3

The search operation on a b-tree is analogous to a search on a binary tree.

Instead of choosing between a left and a right child as in a binary tree, a b-tree

search must make an n-way choice. The correct child is chosen by performing a

linear search of the values in the node using find leaf function as above. After

finding the value greater than or equal to the desired value, the child pointer to

the immediate left of that value is followed. If all values are less than the desired

value, the rightmost child pointer is followed. Of course, the search can be

terminated as soon as the desired node is found. Since the running time of the

search operation depends upon the height of the tree, B-Tree-Search is O(log n).

7 (a) What is collision? Explain the double hashing and chained progressive overflow

collision resolution techniques.

Collisions

synonyms

Keys which hash to the same value.

collision

An attempt to store a record at an address which does not have sufficient room

ie already occupied by another record which is a synonym.

Double Hashing: A method of open addressing for a hash table in which a

collision is resolved by searching the table for an empty place at intervals given

by a different hash function, thus minimizing clustering.

Linear probing collision resolution leads to clusters in the table, because if two

keys collide, the next position probed will be the same for both of them.

The idea of double hashing: Make the offset to the next position probed depend

on the key value, so it can be different for different keys

Need to introduce a second hash function H 2 (K), which is used as the offset in

the probe sequence.

For a hash table of size M, H 2 (K) should have values in the range 1 through

M-1; if M is prime, one common choice is H2(K) = 1 + ((K/M) mod (M-1))

[10]

CO4 L2

Chained Progressive overflow:

 It is similar to progressive overflow except that synonyms are linked together

with pointers. The objective is to reduce the search length for records within

clusters.

8 (a) What is indexed sequential access? Explain the block splitting and merging due

to insertion and deletion in sequence set.

• In indexed and tree structure based access user had to choose between

viewing a file from an indexed point of view or from a sequential point of

view. In Indexed sequential access we are looking for a single

organizational method that provides both of these views simultaneously.

Sequence set:

• A sequence set is a set of records in physical key order which is such that it

stays ordered as records are added and deleted.

• Since sorting and resorting the entire sequence set as records are added

and deleted is expensive, we look at other strategies. In particular, we

look at a way to localize the changes.

CO2 L2

• The idea is to use blocks that can be read into memory and rearranged

there quickly. Like in B-Trees, blocks can be split, merged or their

records re-distributed as necessary.

