1) Write Hunt’s algorithm and explain its working in detail with example

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let 1), be the set
of training records that are associated with node t and y = {31, ¥2,-.., ¥} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in D} belong to the same class y;, then t is a leaf
node labeled as y;.

Step 2: If D; contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in [, are distributed to the children based on the
outcomes. The algorithm is then recursively applied to each child node.

Home Marital Annual Defaulted
Owner Status Income

e

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

To illustrate how the algorithm works, consider the problem of predicting
whether a loan applicant will repay her loan obligations or become delinguent,
subsequently defaulting on her loan. A training set for this problem can be
constructed by examining the records of previous borrowers. In the example
shown in Figure 4.6, each record contains the personal information of a bor-
rower along with a class label indicating whether the borrower has defaulted
on loan payments.

The initial tree for the classification problem contains a single node with
class label Defaulted = No (see Figure 4.7(a)), which means that most of
the borrowers successfully repaid their loans. The tree, however, needs to be
refined since the root node contains records from both classes. The records are
subsequently divided into smaller subsets based on the outcomes of the Home
Owner test condition, as shown in Figure 4.7(h). The justification for choosing
this attribute test condition will be discussed later. For now, we will assume
that this is the best criterion for splitting the data at this point. Hunt's
algorithm is then applied recursively to each child of the root node. From
the training set given in Figure 4.6, notice that all borrowers who are home
owners successfully repaid their loans. The left child of the root is therefore a
leaf node labeled Defaulted = No (see Figure 4.7(b)). For the right child, we
need to continue applying the recursive step of Hunt’s algorithm until all the
records belong to the same class. The trees resulting from each recursive step
are shown in Figures 4.7(¢) and (d).

Defaulted = No

EY

Yas
Defaulted = No

Single,
Divorced

Defaulted = ‘r'E:s—l Defaulted = No | Defaulted = Na

Married

Defaulted = Yos

c) (d)
Figure 4.7. Hunt's algorithm for inducing decisicn frees.

Hunt's algorithm will work if every combination of attribute values is
present in the training data and each combination has a unigque class label.
These assumptions are too stringent for use in most practical situations. Ad-
ditional conditions are needed to handle the following cases:

1. Tt is possible for some of the child nodes created in Step 2 to be empty;
i.e., there are no records associated with these nodes. This can happen
if none of the training records have the combination of attribute values
associated with such nodes. In this case the node is declared a leaf
node with the same class label as the majority class of training records
associated with its parent node.

2. In Step 2, if all the records associated with [y have identical attribute
values (except for the class label), then it is not possible to split these
records any further. In this case, the node is declared a leaf node with
the same class label as the majority class of training records associated
with this node.

Q. 2 What are Rule based classifiers? How Rule Based classifiers are used for
classification? Explain

5.1 Rule-Based Classifier

A rule-based classifier is a technique for classifying records using a collection
of “if .. .then...” rules. Table 5.1 shows an example of a model generated by a
rule-based classifier for the vertebrate classification problem. The rules for the
model are represented in a disjunctive normal form, R = (riVraV... 1), where
R is known as the rule set and r;'s are the classification rules or disjuncts.

Table 5.1. Example of a rule set for the vertebrate classification problem.

r1: (Gives Birth = no) A (Aerial Creature = yes}) — Birds

rz2: (Gives Birth = no) A (Aquatic Creature = yes) — Fishes

r3: (Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals
T4 (Gives Birth = no) A (Aerial Creature = no) — Reptiles

rs: [Aquatic Creature = semi) — Amphibians

Each classification rule can be expressed in the following way:
ri ¢ (Condition;) — y;. (5.1)

The left-hand side of the rule is called the rule antecedent or precondition.
It contains a conjunction of attribute tests:

Condition; = (A op vi) A (Ao op va) A ... (Ag op i), (5.2)

the rule r. On the other hand, its accuracy or confidence factor is defined as
the fraction of records triggered by r whose class labels are equal to y. The
formal definitions of these measures are

: ||
Coverage(r) = D]
Accuracy(r) A|E|y| , (5.3)

where |A| is the number of records that satisfy the rule antecedent, |A Nyl is
the number of records that satisfy both the antecedent and consequent, and
|D| is the total number of records.

5.1.1 How a Rule-Based Classifier Works

A rule-based classifier classifies a test record based on the rule triggered by

the record. To illustrate how a rule-based classifier works, consider the rule
set shown in Table 5.1 and the following vertebrates:

Name Body Skin | Gives | Aguatic Aerial Has | Hiber-
Temperature | Cover | Birth | Creature | Creature | Legs | nates
lemur warm-hlooded fur yes 1o o YES yes
turtle cold-blooded | scales no sermi no VES no
dogfish shark | cold-blooded | scales | yes yes no no no

¢ The first vertebrate, which is a lemur, is warm-blooded and gives birth
to its young. It triggers the rule r3, and thus, is classified as a mammal.

e The second vertebrate, which is a turtle, triggers the rules r4 and rs.
Since the classes predicted by the rules are contradictory (reptiles versus
amphibians), their conflicting classes must be resolved.

e None of the rules are applicable to a dogfish shark. In this case, we
need to ensure that the classifier can still make a reliable prediction even
though a test record is not covered by any rule.

The previous example illustrates two important properties of the rule set gen-
erated by a rule-based classifier.

Mutually Exclusive Rules The rules in a rule set R are mutually exclusive
if no two rules in R are triggered by the same record. This property ensures
that every record is covered by at most one rule in R. An example of a
mutually exclusive rule set is shown in Table 5.3.

Exhaustive Rules A rule set R has exhaustive coverage if there is a rule
for each combination of attribute values. This property ensures that every
record is covered by at least one rule in . Assuming that Body Temperature
and Gives Birth are binary variables, the rule set shown in Table 5.3 has
exhaustive coverage.

Table 5.3. Example of a mutually exclusive and exhaustive rule set.

r1: {Body Temperature = cold-blooded) — Non-mammals
r9: (Body Temperature = warm-blooded) A (Gives Birth = yes) — Mammals
r3: (Body Temperature = warm-blooded) A {Gives Birth = no) — Non-mammals

Together, these properties ensure that every record is covered by exactly
one rule. Unfortunately, many rule-based classifiers, including the one shown
in Table 5.1, do not have such properties. If the rule set is not exhaustive,
then a default rule, rg : () — w4, must be added to cover the remaining
cases. A default rule has an empty antecedent and is triggered when all other
rules have failed. yy is known as the default class and is typically assigned to
the majority class of training records not covered by the existing rules.

If the rule set is not mutually exclusive, then a record can be covered by
several rules, some of which may predict conflicting classes. There are two
ways to overcome this problem.

2 b) Write and explain Sequential Covering algorithm

8.4.3 Rule Induction Using a Sequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without having to
generate a decision tree first) using a sequential covering algorithm. The name comes
from the notion that the rules are learned sequentially (one at a time), where each rule
for a given class will ideally cover many of the class’s tuples (and hopetully none of
the tuples of other classes). Sequential covering algorithms are the most widely used
approach to mining disjunctive sets of classification rules, and form the topic of this
subsection.

There are many sequential covering algorithms. Popular variations include AQ, CN2,
and the more recent RIPPER. The general strategy is as follows. Rules are learned one at
a time. Each time a rule is learned, the tuples covered by the rule are removed, and the
process repeats on the remaining tuples. This sequential learning of rules is in contrast
to decision tree induction. Because the path to each leatin a decision tree corresponds to
a rule, we can consider decision tree induction as learning a set of rules simultaneously.

A basic sequential covering algorithm is shown in Figure 8.10. Here, rules are learned
for one class at a time. Ideally, when learning a rule for a class, C, we would like the rule
to cover all {or many) of the training tuples of class C and none (or few) of the tuples

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.
Input:
I, a data set of class-labeled tuples;

Art_vals, the set of all attributes and their possible values.
Output: A set of IFF-THEM rules.
Method:

(1) Rule_ser ={} // initial set of rules learned is empty
(2) foreachclass ¢ do

(3 repeat

i4) Rule = Learn_One_Rule(D, Ati_vals, c);

(5] remove tuples covered by Rule from I

(6] Rule_set = Rule_set + Rule: (add new rule to rule set
(7 until terminating condition;

(8] endfor
(9) return Rule_Sef;

zure B.10 Basic sequential covering algorithm.

re 8.11

from other classes. In this way, the rules learned should be of high accuracy. The rules
need not necessarily be of high coverage. This is because we can have more than one rule
for a class, so that different rules may cover different tuples within the same class. The
process continues until the terminating condition is met, such as when there are no more
training tuples or the quality of a rule returned is below a user-specified threshold. The
Learn_One_Rule procedure finds the “best” rule for the current class, given the current
set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner
{Figure 8.11). We can think of this as a beam search, where we start off with an empty
rule and then gradually keep appending attribute tests to it. We append by adding the
attribute test as a logical conjunct to the existing condition of the rule antecedent. Sup-
pose our training set, I, consists of loan application data. Attributes regarding each
applicant include their age, income, education level, residence, credit rating, and the
term of the loan. The classifying attribute is loan_decision, which indicates whether a
loan is accepted (considered safe) or rejected (considered risky). To learn a rule for the
class “accept,” we start off with the most general rule possible, that is, the condition of
the rule antecedent is empty. The rule is

IF THEN loan_decision = accept.

We then consider each possible attribute test that may be added to the rule. These
can be derived from the parameter Att_vals, which contains a list of attributes with their
associated values. For example, for an attribute—value pair (att, val), we can consider
attribute tests such as att = val, att < val, att = val, and so on. Typically, the training
data will contain many attributes, each of which may have several possible values. Find-
ing an optimal rule set becomes computationally explosive. Instead, Learn_One_Rule

IF
THEMN loaw_decision = m,nl

f
(J_,,«-’"’
— "\

IF loan_term = shos IF loan_term - long F income —medisim

= &1 “n IF income = high s
THEN loan_decision THEMN loan_decision THEM loan_decision = qoceps | THEM loan_decision
= aCCEpT = decepl

NS

- R

ke
IF income = high AND
age = youth

THEM loan_decision
- deeEpr

IF income = high AND
A0 = Mididle_age
THEM loan_decision
- oep

IF income = high AND
credif_rating = evcellent
THEM loan_decision = accept

L.

F income = high AND
credll_rating = fair
THEM loan_decision
- 0ep

A general-to-specific search through rule space.

Q.4 What are Baye’s classifiers? Explain Baye’s theorem for classification

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can
predict class membership probabilities such as the probability that a given tuple belongs
to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies compar-
ing classification algorithms have found a simple Bayesian classifier known as the naive
Bayesian classifier to be comparable in performance with decision tree and selected neu-
ral network classifiers. Bayesian classifiers have also exhibited high accuracy and speed
when applied to large databases.

Naive Bayesian classifiers assume that the eftect of an attribute value on a given class
1s independent of the values of the other attributes. This assumption is called class-
conditional indepenaence. It is made to simplify the computations involved and, in this
sense, 1s considered “naive.”

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Section 8.3.2
vou will learn how to do naive Bayesian classification.

8.3.] Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who
did early work in probability and decision theory during the 18th century. Let X be a
data tuple. In Bayesian terms, X is considered “evidence.” As usual, it is described by
measurements made on a set of n attributes. Let H be some hypothesis such as that
the data tuple X belongs to a specified class C. For classification problems, we want to
determine P{H|X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X
belongs to class C, given that we know the attribute description of X.

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned
on X. For example, suppose our world of data tuples is confined to customers described
by the attributes age and income, respectively, and that X is a 35-year-old customer with
an income of $40,000, Suppose that H is the hypothesis that our customer will buy a
computer. Then P(H|X) reflects the probability that customer X will buy a computer
aiven that we know the customer’s age and income.

In contrast, P{H) is the prior probability, or a priori probability, of H. For our exam-
ple, this is the probability that any given customer will buy a computer, regardless of age,
income, or any other information, for that matter. The posterior probability, P{H|X),
1s based on more information (e.g., customer information) than the prior probability,
P(H), which 1s independent ot X.

Similarly, P(X|H) is the posterior probability of X conditioned on H. That is, it is the
probability that a customer, X, is 35 years old and earns $40,000, given that we know the
customer will buy a computer.

P(X) is the prior probability of X. Using our example, it is the probability that a
person from our set of customers is 35 years old and earns 340,000,

“How are these probabilities estimated?” P(H), PIX|H), and P(X) may be estimated
from the given data, as we shall see next. Bayes’ theorem is useful in that it provides
a way of calculating the posterior probability, P(H|X), from P(H), P(X|H), and P(X).
Bayes’ theorem is

P(X|H)P(H)

PiX)

P(H|IX)= (8.10)

Now that we have that out of the way, in the next section, we will look at how Bayes’
theorem is used in the naive Bayesian classifier.

8.3.1 Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

I. Let I?be a training set of tuples and their associated class labels. As usual, each tuple
is represented by an n-dimensional attribute vector, X = (x), x,..., x,,), depicting n
measurements made on the tuple from # attributes, respectively, Ay, A2,..., A,

2. Suppose that there are m classes, Cj, G, ..., C,,. Given a tuple, X, the classifier will
predict that X belongs to the class having the highest posterior probability, condi-
tioned on X. That is, the naive Bayesian classifier predicts that tuple X belongs to the
class C; if and only if

PIGIX) = PIG|X) for 1L =j=m,j# i

Thus, we maximize P(C;|X). The class C; for which P(G|X) 1s maximized 1s called
the maximum posteriori hypothesis. By Bayes’ theorem (Eq. 8.10),

_ PX|CHP(C)

P(CX)
(1D P(X)

(8.11)

3. As P(X) is constant for all classes, only P{X|C;)P(C;) needs to be maximized. If the
class prior probabilities are not known, then it is commeonly assumed that the classes
are equally likely, that is, P(Cy) = P(C3) =--- = P(Cy,), and we would therefore
maximize P(X|C;). Otherwise, we maximize P(X|C;)P(C;). Note that the class prior
probabilities may be estimated by P(C;) = |C; p|/|D|, where |C; p| is the number of
training tuples of class C; in D.

4. Given data sets with many attributes, it would be extremely computationally
expensive to compute P{X|C;). To reduce computation in evaluating P(X|C;), the
naive assumption of class-conditional independence is made. This presumes that
the attributes” values are conditionally independent of one another, given the class
label of the tuple (i.e., that there are no dependence relationships among the
attributes). Thus,

P(X|Cy) = [Pl Coy (8.12)
=1
= Pl |C;) = P3| C;) = --- = P(x,|).

We can easily estimate the probabilities P{x|C), P(az| G, ..., Plx,|Ci) from the
training tuples. Recall that here x;, refers to the value of attribute A; for tuple X. For
each attribute, we look at whether the attribute is categorical or continuous-valued.
For instance, to compute P(X|C;), we consider the following:

5. To predict the class label of X, PIX|C)P(C) is evaluated for each class C;. The
classifier predicts that the class label of tuple X is the class C; if and only it

P(X|C)P(C) = PIX|C)P(C)) for L=j=m,jF1i (8.15)

In other words, the predicted class label is the class C; for which P(X|C;)P(C) is the
MaxImum.

Q. 3 How decision trees are used for classification? Explain decision tree induction algorithm for
classification

Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled training
tuples. A decision tree is a flowchart-like tree structure, where each internal node (non-
leaf node) denotes a test on an attribute, each branch represents an outcome of the
test, and each leaf node (or terminal node) holds a class label. The topmost node in
a tree is the root node. A typical decision tree is shown in Figure 8.2. It represents
the concept buys_computer, that is, it predicts whether a customer at AllElectronics is

Figure 8.2

ape?
youth middle_aged senior
1
Q@D credit_rating?
na yes excellent
¢ D -
I\.E,/I yes j \H_”‘:" .\jf.i‘)

A decision tree for the concept buys_computer, indicating whether an AllElectronics cus-
tomer is likely to purchase a computer. Each internal (nonleaf) node represents a test on
an attribute. Each leaf node represents a class (either buys_computer = yves or buys_computer
= o).

likely to purchase a computer. Internal nodes are denoted by rectangles, and leat nodes
are denoted by ovals. Some decision tree algorithms produce only binary trees (where
each internal node branches to exactly two other nodes), whereas others can produce
nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the asso-
clated class label is unknown, the attribute values of the tuple are tested against the
decision tree. A path is traced from the root to a leat node, which holds the class
prediction for that tuple. Decision trees can easily be converted to classification rules,

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of
data partition, D.

Input:

Diata partition, I, which is a set of training tuples and their associated class labels;
attribute_list, the set of candidate attributes;

Atribute_selection_methed, a procedure to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This criterion consists of a
splitting_attribute and, possibly, either a split-poit or splitting subset.

Output: A decision tree.
Method:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)
(10)

(1)
(12)
(13)
(14)

(15)

create a node N;
if tuples in I are all of the same class, C, then

refurn N as a leaf node labeled with the class G
if attribute_list is empty then

refurn N as a leaf node labeled with the majority class in Ik // majority voting
apply Attribute selection_method(D, attribure_list) to find the “best”™ splitting_criterion;
label node N with splitting_criterian;
if splitting_attribute 1s discrete-valued and

multiway splits allowed then // not restricted to binary trees

attribute_list «— attribute_list — splitting_attribute; [{ remove splitting_attribute
for each outcome j of splitting criterion
ff partition the tuples and grow subtrees for each partition

let Dy be the set of data tuples in D satisfving outcome j; /f a partition

if I; is empty then

attach a leaf labeled with the majority class in D to node N;

else attach the node returned by Generate_decision_tree(I;, artribure_list) to node N;
endfor
return N;

Figure 8.3 Basic algorithm for inducing a decision tree from training tuples.

The algorithm 1s called with three parameters: D, attribute_list, and Attribute_
selection_method. We refer to I) as a data partition. Initially, it is the complete set
of training tuples and their associated class labels. The parameter attribute_list is a
list of attributes describing the tuples. Attribute_selection_method specifies a heuris-
tic procedure for selecting the attribute that “best” discriminates the given tuples
according to class. This procedure employs an attribute selection measure such as
information gain or the Gini index. Whether the tree is strictly binary is generally
driven by the attribute selection measure. Some attribute selection measures, such as

the Gini index,

enforce the resulting tree to be binary. Others, like information gain,

do not, therein allowing multiway splits (1.e., two or more branches to be grown from

a node).

The tree starts as a single node, N, representing the training tuples in D (step 1.2

If the tuples in D are all of the same class, then node N becomes a leaf and 1s labeled
with that class (steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All
terminating conditions are explained at the end of the algorithm.

Otherwise, the algorithm calls Attribute_selection_method to determine the splitting
criterion. The splitting criterion tells us which attribute to test at node N by deter-
mining the “best” way to separate or partition the tuples in D into individual classes
(step 6). The splitting criterion also tells us which branches to grow from node N
with respect to the outcomes of the chosen test. More specifically, the splitting cri-
terion indicates the splitting attribute and may also indicate either a split-point or
a splitting subset. The splitting criterion is determined so that, ideally, the resulting

Q. 6 "what are nearest neighbor classifiers? Write an algorithm for K-nearest neighbor
classification and explain it in detail.

5.2 Nearest-Neighbor classifiers

The classification framework shown in Figure 4.3 involves a two-step process:
(1) an inductive step for constructing a classification model from data, and
(2) a deductive step for applying the model to test examples. Decision tree
and rule-based classifiers are examples of eager learners because they are
designed to learn a model that maps the input attributes to the class label as
soon as the training data becomes available. An opposite strategy would be to
delay the process of modeling the training data until it is needed to classify the
test examples. Techniques that employ this strategy are known as lazy learn-
ers. An example of a lazy learner is the Rote classifier, which memorizes the
entire training data and performs classification only if the attributes of a test
instance match one of the training examples exactly. An obvious drawback of

T " + P e o " +
e | B N | RV
[o—_— % f — H — H
iox |} : X i ! X]
No” + 5 + “*.x ' "
- + - e -
+ & + 4 + 4

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Figure 5.7. The 1-, 2-, and 3-nearest neighbors of an instance.

this approach is that some test records may not be classified because they do
not match any training example.

One way to make this approach more flexible is to find all the training
examples that are relatively similar to the attributes of the test example.
These examples, which are known as nearest neighbors, can be used to
determine the class label of the test example. The justification for using nearest
neighbors is best exemplified by the following saying: “If it walks like a duck,
quacks like a duck, and looks like a duck, then it’s probably a duck.” A nearest-
neighbor classifier represents each example as a data point in a d-dimensional
space, where d is the number of attributes. Given a test example, we compute
its proximity to the rest of the data points in the training set, using one of
the proximity measures described in Section 2.4 on page 65. The k-nearest
neighbors of a given example z refer to the k points that are closest to z.

Figure 5.7 illustrates the 1-, 2-, and 3-nearest neighbors of a data point
located at the center of each circle. The data point is classified based on
the class labels of its neighbors. In the case where the neighbors have more
than one label, the data point is assigned to the majority class of its nearest
neighbors. In Figure 5.7(a), the l-nearest neighbor of the data point is a
negative example. Therefore the data point is assigned to the negative class.
If the number of nearest neighbors is three, as shown in Figure 5.7(c), then
the neighborhood contains two positive examples and one negative example.
Using the majority voting scheme, the data point is assigned to the positive
class. In the case where there is a tie between the classes (see Figure 5.7(b)),
we may randomly choose one of them to classify the data point.

The preceding discussion underscores the importance of choosing the right
value for k. If k is too small, then the nearest-neighbor classifier may be

5.
A

2.1 Algorithm

high-level summary of the nearest-neighbor classification method is given in

Algorithm 5.2. The algorithm computes the distance (or similarity) between
each test example z = (x’,y’) and all the training examples (x,y) € D to
determine its nearest-neighbor list, D,. Such computation can be costly if the
number of training examples is large. However, efficient indexing techniques

ar

e available to reduce the amount of computations needed to find the nearest

neighbors of a test example.

A

lgorithm 5.2 The k-nearest neighbor classification algorithm.

1
2
3
4:
b}
fi

: Let k be the number of nearest neighbors and D be the set of training examples.
: for each test example z = (X', ¢’} do

Compute d(x’,x), the distance between z and every example, (x,y) € D.
Select 2. T D, the set of k closest training examples to z.

y' = argmax E(xi a)ED, v = y)

: end for "

Once the nearest-neighbor list is obtained, the test example is classified
based on the majority class of its nearest neighbors:

Majority Voting: 3’ = argmax Z I{v = y;), (5.7)
" (xim)ED:

where v is a class label, y; is the class label for one of the nearest neighbors,
and (-] is an indicator function that returns the value 1 if its argument is
true and 0 otherwise.

In the majority voting approach, every neighbor has the same impact on the
classification. This makes the algorithin sensitive to the choice of k, as shown
in Figure 5.7. One way to reduce the impact of k is to weight the influence
of each nearest neighbor x; according to its distance: w; = 1/d(x’,x;)?. As
a result, training examples that are located far away from z have a weaker
impact on the classification compared to those that are located close to z.
Using the distance-weighted voting scheme, the class label can be determined
as follows:

Distance-Weighted Voting: y' = argmax Z wi % INv=w). (5.8)
L
(s)ED:

The characteristics of the nearest-neighbor classifier are summarized below:

e Nearest-neighbor classification is part of a more general technique known
as instance-based learning, which uses specific training instances to make
predictions without having to maintain an abstraction (or model) de-
rived from data. Instance-based learning algorithms require a proximity
measure to determine the similarity or distance between instances and a
classification function that returns the predicted class of a test instance
based on its proximity to other instances.

e Lazy learners such as nearest-neighbor classifiers do not require model
building, However, classifying a test example can be quite expensive
because we need fo compute the proximity values individually between
the test and training examples. In contrast, eager learners often spend
the bulk of their computing resources for model building. Once a model
has been built, classifying a test example is extremely fast.

e Nearest-neighbor classifiers make their predictions based on local infor-
mation, whereas decision tree and rule-based classifiers attempt to find

e Nearest-neighbor classifiers can produce arbitrarily shaped decision bound-
aries. Such boundaries provide a more flexible model representation
compared to decision tree and rule-based classifiers that are often con-
strained to rectilinear decision boundaries. The decision boundaries of
nearest-neighbor classifiers also hawve high variability because they de-
pend on the composition of training examples. Increasing the number of
nearest neighbors may reduce such variability.

e Nearest-neighbor classifiers can produce wrong predictions unless the
appropriate proximity measure and data preprocessing steps are taken.
For example, suppose we want to classify a group of people based on
attributes such as height (measured in meters) and weight (measured in
pounds). The height attribute has a low variability, ranging from 1.5 m
to 1.85 m, whereas the weight attribute may vary from 90 lb. to 250
Ib. If the scale of the attributes are not taken into consideration, the
proximity measure may be dominated by differences in the weights of a
PErson.

Q.7 What are different methods for comparing classifiers

4.6 Methods for Comparing Classifiers

It is often useful to compare the performance of different classifiers to deter-
mine which classifier works better on a given data set. However, depending
on the size of the data, the observed difference in accuracy between two clas-
sifiers may not be statistically significant. This section examines some of the
statistical tests available to compare the performance of different models and
classifiers.

For illustrative purposes, consider a pair of classification models, M4 and
Mpg. Suppose M4 achieves 85% accuracy when evaluated on a test set con-
taining 30 records, while Mp achieves 75% accuracy on a different test set
containing 5000 records. Based on this information, is M4 a better model
than Mg?

4.6.1 Estimating a Confidence Interval for Accuracy

To determine the confidence interval, we need to establish the probability
distribution that governs the accuracy measure. This section describes an ap-
proach for deriving the confidence interval by modeling the classification task
as a binomial experiment. Following is a list of characteristics of a binomial
experiment:

1. The experiment consists of N independent trials, where each trial has
two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant.

An example of a binomial experiment is counting the number of heads that
turn up when a coin is flipped N times. If X is the number of successes
observed in N trials, then the probability that X takes a particular value is
given by a binomial distribution with mean Np and variance Np(1 — p):

P(X =) = (‘:)p‘”u N

For example, if the coin is fair (p = 0.5) and is flipped fifty times, then the
probability that the head shows up 20 times is

P(X = 20) = GE) 0.520(1 — 0.5)* = 0.0419.

If the experiment is repeated many times, then the average number of heads
expected to show up is 50 x 0.5 = 25, while its variance is 50 % 0.5 x 0.5 = 12.5.

4.6.2 Comparing the Performance of Two Models

Consider a pair of models, M, and M, that are evaluated on two independent
test sets, [y and Do. Let ny denote the number of records in), and ny denote
the number of records in Dy. In addition, suppose the error rate for M} on
Dy is ey and the error rate for Ms on Ds is e5. Our goal is to test whether the
observed difference between e; and e; is statistically significant.

Assuming that n; and ng are sufficiently large, the error rates e; and eg
can be approximated using normal distributions. If the observed difference in
the error rate is denoted as d = e) — ey, then d is also normally distributed
with mean dy, its true difference, and variance, o3. The variance of d can be
computed as follows:

o,

(1 — l—e
o2 ~ §=€|{ E|)+€2{ 2},

4.14
= o (4.14)

where e1(1 — e1)/n; and ez(1 — ez)/ng are the variances of the error rates.
Finally, at the (1 —)% confidence level, it can be shown that the confidence
interval for the true difference d; is given by the following equation:

di =dx ZQI;QEL;. (4.15)

4.6.3 Comparing the Performance of Two Classifiers

Suppose we want to compare the performance of two classifiers using the k-fold
cross-validation approach. Initially, the data set D is divided into k equal-sized
partitions. We then apply each classifier to construct a model from k£ — 1 of
the partitions and test it on the remaining partition. This step is repeated &
times, each time using a different partition as the test set.
Let M;; denote the model induced by classification technique L; during the
j*" iteration. Note that each pair of models My and My are tested on the
same partition j. Let e;; and eg; be their respective error rates. The difference
between their error rates during the j'* fold can be written as d; = e;; — ea;.
If k is sufficiently large, then d; is normally distributed with mean df”, which
is the true difference in their error rates, and variance . Unlike the previous
approach, the overall variance in the observed differences is estimated using
the following formula:
o Yjm(di—d)

Tdr = Tk — 1)

(4.16)

where d is the average difference. For this approach, we need to use a t-
distribution to compute the confidence interval for df":

df¥ = d £t _q) k104

The coefficient 2(;_,) x_; is obtained from a probability table with two input
parameters, its confidence level (1 — &) and the number of degrees of freedom,
f — 1. The probability table for the t-distribution is shown in Table 4.6.

Q. 8. What is cluster analysis? What are the requirement of Cluster analysis.

[0.1.] What Is Cluster Analysis?

Cluster analysis or simply clustering is the process of partitioning a set of data objects
(or observations) into subsets. Each subset is a cluster, such that objects in a cluster
are similar to one another, yet dissimilar to objects in other clusters. The set of clusters
resulting from a cluster analysis can be referred to as a clustering. In this context, dif-
ferent clustering methods may generate different clusterings on the same data set. The
partitioning is not performed by humans, but by the clustering algorithm. Hence, clus-
tering is useful in that it can lead to the discovery of previously unknown groups within
the data.

10.1.2 Requirements for Cluster Analysis

Clustering is a challenging research field. In this section, you will learn about the require-
ments for clustering as a data mining tool, as well as aspects that can be used for
comparing clustering methods.

The following are typical requirements of clustering in data mining.

Scalability: Many clustering algorithms work well on small data sets containing fewer
than several hundred data objects; however, a large database may contain millions or
even billions of objects, particularly in Web search scenarios. Clustering on only a
sample of a given large data set may lead to biased results. Therefore, highly scalable
clustering algorithms are needed.

Ability to deal with different types of attributes: Many algorithms are designed to
cluster numeric (interval-based) data. However, applications may require clustering
other data types, such as binary, nominal (categorical), and ordinal data, or mixtures
of these data types. Recently, more and more applications need clustering techniques
for complex data types such as graphs, sequences, images, and documents.

Discovery of clusters with arbitrary shape: Many clustering algorithms determine
clusters based on Euclidean or Manhattan distance measures (Chapter 2). Algorithms
based on such distance measures tend to find spherical clusters with similar size and
density. However, a cluster could be of any shape. Consider sensors, for example,
which are often deployed for environment surveillance. Cluster analysis on sensor
readings can detect interesting phenomena. We may want to use clustering to find
the frontier of a running forest fire, which is often not spherical. It is important to
develop algorithms that can detect clusters of arbitrary shape.

Requirements for domain knowledge to determine input parameters: Many clus-
tering algorithms require users to provide domain knowledge in the form of input
parameters such as the desired number of clusters. Consequently, the clustering
results may be sensitive to such parameters. Parameters are often hard to determine,
especially for high-dimensionality data sets and where users have yet to grasp a deep
understanding of their data. Requiring the specification of domain knowledge not
only burdens users, but also makes the quality of clustering difficult to contrel.

Ability to deal with noisy data: Most real-world data sets contain outliers and/or
missing, unknown, or erroneous data. Sensor readings, for example, are often
noisy—some readings may be inaccurate due to the sensing mechanisms, and some
readings may be erroneous due to interferences from surrounding transient objects.
Clustering algorithms can be sensitive to such noise and may produce poor-quality
clusters. Therefore, we need clustering methods that are robust to noise.

Incremental clustering and insensitivity to input order: In many applications,
incremental updates (representing newer data) may arrive at any time. Some clus-
tering algorithms cannot incorporate incremental updates into existing clustering
structures and, instead, have to recompute a new clustering from scratch. Cluster-
ing algorithms may also be sensitive to the input data order. That is, given a set
of data objects, clustering algorithms may return dramatically different clusterings
depending on the order in which the objects are presented. Incremental clustering
algorithms and algorithms that are insensitive to the input order are needed.

Capability of clustering high-dimensionality data: A data set can contain numerous
dimensions or attributes. When clustering documents, for example, each keyword
can be regarded as a dimension, and there are often thousands of keywords. Most
clustering algorithms are good at handling low-dimensional data such as data sets
involving only two or three dimensions. Finding clusters of data objects in a high-
dimensional space 1s challenging, especially considering that such data can be very

sparse and highly skewed.

Constraint-based clustering: Real-world applications may need to perform clus-
tering under various kinds of constraints. Suppose that your job is to choose the
locations for a given number of new automatic teller machines (ATMs) in a city. To
decide upon this, you may cluster households while considering constraints such as
the city’s rivers and highway networks and the types and number of customers per
cluster. A challenging task is to find data groups with good clustering behavior that
satisfy specified constraints.

Interpretability and usability: Users want clustering results to be interpretable,
comprehensible, and usable. That is, clustering may need to be tied in with spe-
cific semantic interpretations and applications. It is important to study how an
application goal may influence the selection of clustering features and clustering
methods.

Q. 9 Write and explain basic K-means algorithm. What are its limitations?

The K-means clustering technique is simple, and we begin with a description
of the basic algorithm. We first choose K initial centroids, where K is a user-
specified parameter, namely, the number of clusters desired. Each point is
then assigned fo the closest centroid, and each collection of points assigned to
a centroid is a cluster. The centroid of each cluster is then updated based on
the points assigned to the cluster. We repeat the assignment and update steps
until no point changes clusters, or equivalently, until the centroids remain the
samne.

K-means is formally described by Algorithm 8.1. The operation of K-means
is illustrated in Figure 8.3, which shows how, starting from three centroids, the
final clusters are found in four assignment-update steps. In these and other
figures displaying K-means clustering, each subfigure shows (1) the centroids
at the start of the iteration and (2) the assignment of the points to those
centroids. The centroids are indicated by the “4” symbol; all points belonging
to the same cluster have the same marker shape.

Algorithm 8.1 Basic K-means algorithm.

. Select K points as initial centroids.

repeat
Form K clusters by assigning each point to its closest centroid.
Recompute the centroid of each cluster.

until Centroids do not change.

S b

In the first step, shown in Figure 8.3(a), points are assigned to the initial
centroids, which are all in the larger group of points. For this example, we use
the mean as the centroid. After points are assigned to a centroid, the centroid
is then updated. Again, the figure for each step shows the centroid at the
beginning of the step and the assignment of points to those centroids. In the
second step, points are assigned to the updated centroids, and the centroids

&N LY LY O A
A A a 4 A a
A Ra At ﬁEﬂaﬁ as an ﬂg%aaﬂﬁ
a8l aédﬁ% aj%i ﬂa‘%i
9 Bl p ‘3 o Sl & af s & A B &
B o DG% ﬁ.-‘.‘.ﬂh "5% ﬁﬂﬂbé&% Aﬁ%&a%b
o 4% & FRV TN B ABA A N8
o o g o 4 o & A
o D fa¥ ri
a o 4= o+ o o o o
ot oO oo ad
=] Q =)
nnnl:é'n Q%'g I:ID:IUDD o%? ﬂnn'h;n % I:Iﬂd.':iljn Og
5 oo o o 5 o a o
{a) Iteration 1, (b} Iteration 2. {c) Iteration 3. {d) Iteration 4.

Figure 8.3. Using the K-means algorithm to find three clusters in sample data.

are updated again. In steps 2, 3, and 4, which are shown in Figures 8.3 {b),
(c), and (d), respectively, two of the centroids move to the two small groups of
points at the bottom of the figures. When the K-means algorithm terminates
in Figure 8.3(d), because no more changes occur, the centroids have identified
the natural groupings of points.

For some combinations of proximity functions and types of centroids, K-
means always converges to a solution; i.e., K-means reaches a state in which no
points are shifting from one cluster to another, and hence, the centroids don’t
change. Because most of the convergence occurs in the early steps, however,
the condition on line 5 of Algorithm 8.1 is often replaced by a weaker condition,
e.g., repeat until only 1% of the points change clusters.

We consider each of the steps in the basic K-means algorithm in more detail
and then provide an analysis of the algorithm’s space and time complexity.

8.2.5 Strengths and Weaknesses

K-means is simple and can be used for a wide variety of data types. It is also
quite efficient, even though multiple runs are often performed. Some variants,
including bisecting K-means. are even more efficient, and are less suscepti-
ble to initialization problems. K-means is not suitable for all types of data,

however. It cannot handle non-globular clusters or clusters of different sizes
and densities, although it can typically find pure subclusters if a large enough
number of clusters is specified. K-means also has trouble clustering data that
contains outliers. Outlier detection and removal can help significantly in such
situations. Finally, K-means is restricted to data for which there is a notion of
a center (centroid). A related technique, K-medoid clustering, does not have
this restriction, but is more expensive.

Q. 11 Explain DBSCAN clustering algorithm. Write about its strengths and weaknesses

8.4 DBSCAN

Density-based clustering locates regions of high density that are separated
from one another by regions of low density. DBSCAN is a simple and effec-
tive density-based clustering algorithm that illustrates a number of important
concepts that are important for any density-based clustering approach. In this
section, we focus solely on DBSCAN after first considering the key notion of
density. Other algorithmns for finding density-based clusters are described in
the next chapter.

8.4.1 Traditional Density: Center-Based Approach

Althongh there are not as many approaches for defining density as there are for
defining similarity, there are several distinet methods. In this section we dis-
cuss the center-based approach on which DBSCAN is based. Other definitions
of density will be presented in Chapter 9.

In the center-based approach, density is estimated for a particular point in
the data set by counting the number of points within a specified radius, Eps,
of that point. This inecludes the point itself. This technique is graphically
lustrated by Figure 8.20. The number of points within a radius of Eps of
point A is 7, including A itself.

This method is simple to implement, but the density of any point will
depend on the specified radius. For instance, if the radius is large enough,
then all points will hase a density of m, the number of points in the data set.
Likewise, if the radius is too small, then all points will have a density of 1.
An approach for deciding on the appropriate radius for low-dimensional data
is given in the next section in the context of our discussion of DBSCAN.

Classification of Points According to Center-Based Density

The center-based approach to density allows us to classify a point as being (1)
in the interior of a dense region (a core point), (2) on the edge of a dense region
(a border point), or (3) in a sparsely occupied region (a noise or background
point). Figure 8.21 graphically illustrates the concepts of core, border, and
noise points using a collection of two-dimensional points. The following text
provides a more precise description.

Core points: These points are in the interior of a density-based cluster. A
point is a core point if the number of points within a given neighborhood
around the point as determined by the distance function and a user-
specified distance parameter, Eps, exceeds a certain threshold, MinPts,
which is also a user-specified parameter. In Figure 8.21, point 4 is a
core point, for the indicated radius (Eps) if MinPts < 7.

Border points: A border point is not a core point, but falls within the neigh-
borhood of a core point. In Figure 8.21, point B is a border point. A
border point can fall within the neighborhoods of several core points.

Noise points: A noise point is any point that is neither a core point nor a
border point. In Figure 8.21, point C' is a noise point.

528 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

border point core point

Figure 8.20. Center-based
density. Figure 8.21. Core, border, and noise points.

Algorithm: DBSCAN: a density-based clustering algorithm.
Input:

[a data set containing » objects,

€: the radius parameter, and

MinPrs: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

(1) mark all objects as unvisited;

i2) do

(3) randomly select an unvisited object p;

Y] mark p as visited;

(5) if the e-neighborhood of p has at least MinPis objects

(6] create a new cluster C, and add p to &

(7] let W be the set of objects in the e-neighborhood of p:

(8] for each point p’ in N

(9] if o’ 1s unvisited

(10} mark p' as visited;

(11} if the e-neighborhood of p’ has at least MinPts points,
add those points to N;

(12} if p’ is not vet a member of any cluster, add p’ to &

(13) end for

(14} output <

(15} else mark p as noise;

(16) until no object is unvisited;

*e 10.15 DBSCAN algorithm.

8.4.3 Strengths and Weaknesses

Because DBSCAN uses a density-based definition of a cluster, it is relatively
resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus,

DBSCAN can find many clusters that could not be found using K-means,
such as those in Figure 822, As indicated previously, however, DBSCAN has
trouble when the clusters have widely varying densities. It also has trouble
with high-dimensional data because density is more difficult to define for such
data. One possible approach to dealing with such issues is given in Section
9.4.8. Finally, DBSCAN can be expensive when the computation of nearest
neighbors requires computing all pairwise proximities, as is usually the case
for high-dimensional data.

Q12 Explain Agglomerative hierarchical clustering in detail.

Hierarchical clustering techniques are a second important category of cluster-
ing methods. As with K-means, these approaches are relatively old compared
to many clustering algorithms, but they still enjoy widespread use. There are
two basic approaches for generating a hierarchical clustering:

Agglomerative: Start with the points as individual clusters and, at each
step, merge the closest pair of clusters. This requires defining a notion
of cluster proximity.

Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster
until only singleton clusters of individual points remain. In this case, we
need to decide which cluster to split at each step and how to do the
splitting.

A hierarchical clustering is often displayed graphically using a tree-like
iagram called a dendrogram, which displays both the cluster-subcluster

pl

])

pi p2 p3 p4

{a) Dendrogram. {(b) Nested cluster diagram.

Figure 8.13. A hierarchical clustering of four points shown as a dendrogram and as nested clusters.

relationships and the order in which the clusters were merged (agglomerative
view) or split (divisive view). For sets of two-dimensional points, such as those
that we will use as examples, a hierarchical clustering can also be graphically
represented using a nested cluster diagram. Figure 8.13 shows an example of
these two types of figures for a set of four two-dimensional points. These points
were clustered using the single-link technique that is described in Section 8.3.2.

8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm

Many agglomerative hierarchical clustering technigues are variations on a sin-
gle approach: starting with individual points as elusters, successively merge
the two closest clusters until only one cluster remains. This approach is ex-
pressed more formally in Algorithm &.3.

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

: Compute the proximity matrix, if necessary.

repeat
Merge the closest two clusters.
Update the proximity matrix to reflect the proximity between the new
cluster and the original clusters.

until Only one cluster remains.

o b

=

Defining Proximity between Clusters

06

05

o4k

D.3r

0.2

b1

o

LR

.2

od

) MIN (single link.)

{b) MAX (complete link.)

{c) Group average.

Figure 8.14. Graph-based definitions of cluster proximity

=3

L8

L

1]

B

0.z

0.3

I;I.,-ln

i

06

Point | z Coordinate | y Coordinate
bl 0.40 0.53
p2 0.22 0.3%
p3 0.35 0.32
pd 0.26 0.19
p5 0.08 0.41
pb | (145 (.30

Figure 8.15. Set of 6 two-dimensional points.

Table 8.3. =y coordinates of & points.

pl p2 p3 pd pa pf
pl | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23
p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25
pd | 0.22 | 0,15 | 0,00 | 0.15 | 0.28 | 0.11
pd | 0.37 | 0.20 [0.15 [0.00 | 0.29 | 0.22
ps | 034 | .14 | 0.28 | 0.29 | 0.00 | 0.39
p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

dist({3,6},{2,5})

min(dist(3,2), dist(6,2), dist(3

min{0.15,0.25,0.28, 0.39)

0.15.

,5), dist(6,5))

Complete Link or MAX or CLIQUE

dist({3,6},{4}) = max(dist(3,4), dist(6,4))
= max(0.15,0.22)
= (.22

Group Average

dist({2,5},{1}) = (0.2357 +0.3421)/(2%1)
~ 0.2889
dist({3,6,4},{2,5}) = (0.15+ 0.28 + 0.25 4 0.39 +0.20 + 0.29) /(6 * 2)
= 0.26

