

Internal Assessment Test III – May 2018

Scheme and Solution

Sub: System Software & Compiler Design (15CS63)

Q.1. Explain the SIC/XE machine architecture.

Ans:

SIC/XE machine architecture

• Memory

• Registers

• Data Formats

• Instruction Formata

• Addressing Modes

• Instruction Set

• Input and Output

Q.2. Generate object code for the given SIC/XE program 10M

QUIZ START 0

FIRST LDA #3

 STX THREE OPCODES:

 LDX #0 LDA-00

 +LDS THREE STX-10

 ADDR A,X LDX-04

 +STA RESULT,X LDS-6C

RESULT RESW 1 ADDR-90

THREE RESW 1 STA-0C

 END FIRST

Object Code

Location Label Mnemonic Operand Object Code

 QUIZ START 0

0000 FIRST LDA #3 010003

0003 STX THREE 132010

0006 LDX #0 050000

0009 +LDS THREE 6F300009

000D ADDR A,X 90

000F +STA RESULT ,X 0FB00013

0013 RESULT RESW 1

0016 THREE RESW 1

0019 END FIRST

Q.3 Define program relocation. Explain the different ways of doing program relocation.

Ans: Relocation is the process of assigning load addresses to position-dependent, but locatable code of

a program and adjusting the code and data in the program to reflect the assigned addresses.

One problem faced by users of simple assembly and loading systems is where to put programs in

memory. Up to this point in the discussion, it has been assumed that assembly programs would

start at location zero unless the programmer explicitly set a different assembly origin by

modifying the location counter. This is clearly not an acceptable solution on large systems where

code must be written without any knowledge of where it will eventually be run. The solution is

to introduce a relocation mechanism, that is, a mechanism that allows the decision about where

to put a program in memory to be deferred until after the program has been assembled and

compiled.

If we require the program to be reassembled in order to change the location where it will be

loaded, we could refer to this as assembly-time relocation, and this view is useful, particularly if

the source code was compiled and the assembly code itself is viewed as something like an object

code for communication between the compiler and a load and go assembler.

At the other extreme, some machine languages allow a running program to be unloaded from

memory and reloaded in a different location without harm. This is called run-time relocation.

Run-time relocation is only possible if consistent use is made of base registers or relative

addressing. If the machine code or the user data structures contain absolute memory addresses,

moving the code and data to a different address would be very difficult, but if all branch

addresses and pointers are relative, that is, expressed as displacements from the memory location

containing the address to the memory location to which the address refers, we can move the

entire block of data holding a program's code and data to a different memory address. Machines

that allow programs to be written this way are said to support position independent code.

Virtual memory hardware (to be discussed later) can hide the complexity of position indepent

programming from users by using special address translation hardware to perform run-time

relocation, but usually, ther term position independent code is reserved for programs which are

explicitly coded to be able to be run at any memory address without the need to edit any memory

addresses in the code.

Another way of thinking of relocation is in terms of when the objects that make up a program are

bound to actual memory locations. We can therefore speak about the binding time of each object

in the program. Some objects may be explicitly bound by the programmer. Some objects may be

bound to specific memory locations at compile time, compile-time binding, and the binding of

some objects may be deferred, for example, until the time the program is loaded in memory or

even later, in run-time binding.

If binding is done at any time between run-time, when it is appropriate to speak of position

independent code, and assembly time or compile time, we must modify the object code to allow

a distinction between the values that are already determined -- those representing constants and

those representing addresses of objects that are already bound to specific memory addresses, and

values that are not-yet bound.

Q.4. With an algorithm, explain pass-1 of a linking loader. 10M

Ans:

Algorithm for Pass 1 of a linking loader:

Pass 1:
Begin
get PROOADDR from operating system
set CSADDR to PROOADDR {for first control section}
while not end of input do

begin
read next input record {Header record for control section}
set CSLTH to control section length
search ESTAB for control section name
if found then

set error flag {duplicate external symbol}
else

enter control section name into ESTAB with value CSADDR
while record type ~ 'E' do

begin
read next input record
if record type = 'D' then

for each symbol in the record do
begin

search ESTAB for symbol name
if found then

set error flag (duplicate external symbol)
else

enter symbol into ESTAB with value(CSADDR +
indicated address)
end {for}

end {while ~ 'E'}
add CSLTH to CSADDR {starting address for next control section}

end {while not EOF}
end {Pass 1}

Q.5. Write and explain the algorithm for a pass-1 of two-pass assembler. 10M

Ans: Algorithm for Pass 1 assembler:

begin

 if starting address is given

 LOCCTR = starting address;

 else

 LOCCTR = 0;

 while OPCODE != END do ;; or EOF

 begin

 read a line from the code

 if there is a label

 if this label is in SYMTAB, then error

 else insert (label, LOCCTR) into SYMTAB

 search OPTAB for the op code

 if found

 LOCCTR += N ;; N is the length of this instruction (4 for MIPS)

 else if this is an assembly directive

 update LOCCTR as directed

 else error

 write line to intermediate file

 end

 program size = LOCCTR - starting address;

end

Q.6. (a) Give the target address generated for the following machine instruction: 6M

i) 032600h (ii) 03C300h (iii) 0310C303hif (B)=006000, (PC)=003000, (X)=00090

Ans: (i) Target Address= 600+3000=3600H

 (ii) TA is 300+90+6000= 6390H

 (iii) TA is 0C303

(b) Write the differences between system software and application software with examples.

 4M

Ans:

 7. What is loader? What are its advantages and disadvantages? Explain the boot strap loader with

algorithm. 10M

Ans:

 In computer systems a loader is the part of an operating system that is responsible for loading

programs and libraries. It is one of the essential stages in the process of starting a program, as it places

programs into memory and prepares them for execution.

Alternatively referred to as bootstrapping, bootloader, or boot program, a bootstrap loader is a

program that resides in the computer's EPROM, ROM, or other non-volatile memory. It is automatically

executed by the processor when turning on the computer.

