

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 3 – May. 2018

Scheme and Solution

Sub: Software Testing Code: 15IS63

Date

: 22/ 05/2018 Duration:

90

mins

Max

Marks: 50
Sem: VI Branch: ISE

Note: Answer any five questions:

1. a) Explain decomposition based integration with example. (4 M)

Functional decomposition, is expressed either as a tree or in textual form. These help in the order in
which modules are to be integrated. There are four choices: from the top of the tree downward (top
down), from the bottom of the tree upward (bottom up), some combination of these (sandwich), or
most graphically, none of these (the big bang).All of these integration orders presume that the units
have been separately tested,

Thus the goal of decomposition based integration is to test the interfaces among separately tested

units.

b) With an example explain the top-down integration and bottom-up integration. (6 M)

Top-down integration begins with the main program (the root of the tree). Any lower level unit

that is called by the main program appears as a “stub”, where stubs are pieces of throw-away

code that emulate a called unit. If we performed top-down integration testing for the SATM

system, the first step would be to develop stubs for all the units called by the main program:

Here are two examples of stubs.

In the stub for GetPINforPAN, the tester replicates a table look-up with just a few values that will

appear in test cases. In the stub for KeySensor, the tester must devise a sequence of port events that

Can occur once each time the KeySensor procedure is called. (Here, we provided the keystrokes to

partially enter the PIN ‘8876’, but the user hit the cancel button before the fourth digit.) In

practice, the effort to develop stubs is usually quite significant. There is good reason to consider

stub code as part of the software development, and maintain it under configuration management.

Once all the stubs for SATM main have been provided, we test the main program as if it were a

stand-alone unit. We could apply any of the appropriate functional and structural techniques, and

look for faults. When we are convinced that the main program logic is correct, we gradually

replace stubs with the actual code. Even this can be problematic. Would we replace all the stubs at

once? If we did, we would have a “small bang” for units with a high outdegree. If we replace one

stub at a time, we retest the main program once for each replaced stub. This means that, for the

SATM main program example here, we would repeat its integration test eight times (once for each

replaced stub, and once with all the stubs).

Bottom-up Integration

Bottom-up integration is a “mirror image” to the top-down order, with the difference that stubs are

Replaced by driver modules that emulate units at the next level up in the tree. In bottom up

integration

we start with the leaves of the decomposition tree (units like ControlDoor and DispenseCash), and

test them with specially coded drivers. There is probably less throw-away code in drivers than

there is in stubs. Recall we had one stub for each child node in the decomposition tree. Most

systems have a fairly high fan-out near at the leaves, so in the bottom-up integration order, we

won’t have as many drivers. This is partially offset by the fact that the driver modules will be more

complicated.

2. Explain call graph based integration with the help of pair wise integration and neighborhood integration

(10 M)

One of the drawbacks of decomposition based integration is that the basis is the functional

decomposition tree. If we use the call graph instead, we mitigate this deficiency; Call graph Is a

directed, labeled graph , Vertices are methods , A directed edge joins calling vertex to the called vertex

.Adjacency matrix is also used.

Pair Wise integration

The idea behind pair-wise integration is to eliminate the stub/driver development effort. Rather than

Develop stubs and/or drivers, why not use the actual code? At first, this sounds like big bang

integration, but we restrict a session to just a pair of units in the call graph. The end result is that

we have one integration test session for each edge in the call graph (40 for the SATM call graph

in Figure 4.2). This is not much of a reduction in sessions from either top-down or bottom-up (42

sessions), but it is a drastic reduction in stub/driver development.

Neighborhood Integration

We define the neighborhood of a node in a graph to be the set of nodes that are one edge away

from the given node. In a directed graph, this means all the immediate predecessor nodes and all

the immediate successor nodes (notice that these correspond to the set of stubs and drivers of the

node). The eleven neighborhoods for the SATM example (based on the call graph in Figure 4.2)

are given in Table.

Table 3 SATM Neighborhoods Node

 Predece

ssors

Successors

16 1 9, 10, 12

17 1 11, 14, 18

18 17 14, 15

19 1 14, 15

23 22 14, 15

24 22 14, 15

26 22 14, 15, 6, 8, 2, 3

27 22 14, 15, 2, 3, 4, 13

25 22 15

22 1 23, 24, 26, 27, 25

1 n/a 5, 7, 2, 21, 16, 17, 19, 22

3. a) Briefly explain six basic principles of analysis and testing.(6 M)

• General engineering principles:

– Partition: divide and conquer

– Visibility: making information accessible

– Feedback: tuning the development process

• Specific A&T principles:

– Sensitivity: better to fail every time than sometimes

– Redundancy: making intentions explicit

– Restriction: making the problem easier

b) Write a note on software quality goals

• Process qualities (visibility)

• Product qualities

– internal qualities (maintainability)

– external qualities

• usefulness qualities:

– usability, performance, security, portability, interoperability

• dependability

– correctness, reliability, safety, robustness

4. Give the standard structure of analysis and test plan. (10 M)

A test and analysis plan may not address all aspects of software quality and testing activities. It should

indicate the features to be verified and those that are excluded from consideration (usually because

responsibility for them is placed elsewhere). For example, if the item to be verified includes a graphical

user interface, the test and analysis plan might state that it deals only with functional properties and not

with usability, which is to be verified separately by a usability and human interface design

Team Explicit indication of features not to be tested, as well as those included in an analysis and test

plan, is important for assessing completeness of the overall set of analysis and test activities.

Assumption that a feature not considered in the current plan is covered at another point is a major cause

of missing verification in large projects. The quality plan must clearly indicate criteria for deciding the

success or failure of each planned activity, as well as the conditions for suspending and resuming

analysis and test. Plans define items and documents that must be produced during verification. Test

deliverables are particularly important for regression testing, certification, and process improvement

The core of an analysis and test plan is a detailed schedule of tasks. The schedule is usually illustrated

with GANTT and PERT diagrams showing the relation among tasks as well as their relation to other

project milestones.[1] The schedule includes the allocation of limited resources (particularly staff) and

indicates responsibility for resources and responsibilities A quality plan document should also include

an explicit risk plan with contingencies. As far as possible, contingencies should include unambiguous

triggers (e.g., a date on which a contingency is activated if a particular task has not be completed) as

well as recovery procedures. Finally, the test and analysis plan should indicate scaffolding, oracles, and

any other software or hardware support required for test and analysis activities.

Analysis and test items:

The items to be tested or analyzed. The description of each item indicates version and installation

procedures that may be required.

Features to be tested:

The features considered in the plan.

Features not to be tested:

Features not considered in the current plan.

Approach:

The overall analysis and test approach, sufficiently detailed to permit identification of the major test

and analysis tasks and estimation of time and resources.

Pass/Fail criteria:

Rules that determine the status of an artifact subjected to analysis and test.

Suspension and resumption criteria:

Conditions to trigger suspension of test and analysis activities (e.g., an excessive failure rate) and

conditions for restarting or resuming an activity.

Risks and contingencies:

Risks foreseen when designing the plan and a contingency plan for each of the identified risks.

Deliverables:

A list all A&T artifacts and documents that must be produced.

Task and schedule:

A complete description of analysis and test tasks, relations among them, and relations between A&T

and development tasks, with resource allocation and constraints. A task schedule usually includes

GANTT and PERT diagrams.

Staff and responsibilities:

Staff required for performing analysis and test activities, the required skills, and the allocation of

responsibilities among groups and individuals. Allocation of resources to tasks is described in the

schedule.

Environmental needs:

Hardware and software required to perform analysis or testing activities.

5. List out the integration faults and explain (6 M)

b) What is a test and analysis report (2 M)

Reports of test and analysis results serve both developers and test designers. They identify open faults

for developers and aid in scheduling fixes and revisions. They help test designers assess and refine their

approach, for example, noting when some class of faults is escaping early test and analysis and

showing up only in subsystem and system testing

6. Explain in detail dependable properties

Each quality explanation in detail (2 X 4= 8M)

Example : 2 M

Dependability Qualities:

• Correctness:

– A program is correct if it is consistent with its specification

• seldom practical for non-trivial systems

• Reliability:

– likelihood of correct function for some ``unit'' of behavior

• relative to a specification and usage profile

• statistical approximation to correctness (100% reliable = correct)

• Safety:

– preventing hazards

• Robustness

 -acceptable (degraded) behavior under extreme conditions

7. a) Explain path based integration with example.

Path-Based Integration

 Focus on interactions among system units

 Rather than merely to test interfaces among separately developed and tested units

b) Differentiate between manual inspection and automated analysis.

Manual inspection

• can be applied to essentially any document

– requirements statements

– architectural and detailed design documents

– test plans and test cases

– program source code

• may also have secondary benefits

– spreading good practices

– instilling shared standards of quality.

• takes a considerable amount of time

• re-inspecting a changed component can be expensive

• used primarily

– where other techniques are inapplicable

– where other techniques do not provide sufficient coverage

Automatic Static Analysis:

• More limited in applicability

– can be applied to some formal representations of requirements models

– not to natural language documents

• are selected when available

– substituting machine cycles for human effort makes them particularly cost-effective.

8. Define i) MM Path ii) MEP iii) Data quiescence iv) Message quiescence v) Port and give example for

each

MM Path:

A module to module path!

An interleaved sequence of module execution paths and messages

Used to describes sequences of module execution paths that include transfers of control among separate

units MM-paths always represent feasible execution paths, and these paths cross unit boundaries

MEP: A sequence of statements within a module that!

 Begins with a source node

 Ends with a sink node

 With no intervening sink nodes

Message quiescence
Occurs when a unit that sends no messages is reached!

Data quiescence

Occurs when a sequence of processing ends in the creation of stored data that is not immediately used!

The causal path Data A has no quiescence" The non-causal path D1 and D2 is quiescent at the

node P-1"

