

Scheme & Solutions

1. The software architecture of a program or computing system is the structure or structures of the

system, which comprise software elements, the externally visible properties of those elements, and

the relationships among them. Software architecture is a result of technical, business and social

influences. Its existence in turn affects the technical, business and social environments that

subsequently influence future architectures. We call this cycle of influences, from environment to the

architecture and back to the environment, the Architecture Business Cycle (ABC). This chapter

introduces the ABC in detail and examine the following: How organizational goals influence

requirements and development strategy. How requirements lead to architecture. How

architectures are analyzed. How architectures yield systems that suggest new organizational

capabilities and requirements.

USN

Improvement Test – May 2018

Sub: Software Architecture Code: 10IS81

Date: 21-05-18 Duration: 90 mins Max Marks: 50 Sem: VIII Branch: ISE

Note: Answer any FIVE questions, Selecting at least TWO questions from each part. All questions carry

equal marks. Total marks: 50

PART-A Marks
OBE

CO RBT

1. Explain Software Architecture. Explain ABC. [10] CO1 L4

2. State the problem of KWIC. Propose implicit invocation and Pipes & Filters style

to implement a solution for the same.

[10] CO3 L5

3. List Quality Attributes Scenarios and Explain. [10] CO2 L1,L3

4. Illustrate the behavior of Blackboard Architecture based on Speech recognition

& List the steps to implement Blackboard Pattern.

[10] CO3 L3,L1

PART-B Marks
OBE

CO RBT

5. Explain the possible dynamic behavior of MVC pattern, with suitable sketches [10] CO3 L4

6. List the steps performed in designing an Architecture using ADD method.

Explain.

[10] CO4 L1,L3

7. Explain the Reflection Architectural Patterns and its known uses. [10] CO4 L5

8. Discuss the structure, dynamics & Implementation of Master-Slave pattern [10] CO5 L5

Working of architecture business cycle: 1) The architecture affects the structure of the developing

organization. An architecture prescribes a structure for a system it particularly prescribes the units of

software that must be implemented and integrated to form the system. Teams are formed for

individual software units; and the development, test, and integration activities around the units.

Likewise, schedules and budgets allocate resources in chunks corresponding to the units. Teams

become embedded in the organization’s structure. This is feedback from the architecture to the

developing organization. 2) The architecture can affect the goals of the developing organization. A

successful system built from it can enable a company to establish a foothold in a particular market

area. The architecture can provide opportunities for the efficient production and deployment of the

similar systems, and the organization may adjust its goals to take advantage of its newfound

expertise to plumb the market. This is feedback from the system to the developing organization and

the systems it builds. 3) The architecture can affect customer requirements for the next system by

giving the customer the opportunity to receive a system in a more reliable, timely and economical

manner than if the subsequent system were to be built from scratch. 4) The process of system

building will affect the architect’s experience with subsequent systems by adding to the corporate

experience base. 5) A few systems will influence and actually change the software engineering

culture. i.e, The technical environment in which system builders operate and learn.

2. Aims: – To d emonstrate key features of four architectural styles. – To identify relative strengths and

weaknesses of these four architectural styles. • First proposed by David Parnas as an example to

demonstrate information hiding - key idea b ehind OO. The problem: “The KWIC system index

system accepts an ordered set of lines, each line is an ordered set of words, and each word is an

ordered set of characters. Any line may be “circularly shifted ” by repeatedly removing the first word

and appending it at the end of the line. The KWIC index system outputs a listing of all circular shifts

of all lines in alphabetical ord er.” • Widely used in Computer Science: – Unix man page permutated

index – Keyword in context indexes for libraries

KWIC Example Input: Pattern-Oriented Software Architecture Software Architecture Introducing

Design Patterns Output (assuming Pattern-Oriented treated as one word): Architecture Software

Architecture Pattern-Oriented Software Design Patterns Introducing Introducing Design Patterns

Patterns Introducing Design Pattern-Oriented Software Architecture Software Architecture Software

Architecture Pattern-Oriented • Can now quickly search for titles that contain phrases such as

“Software Architecture” or “Design Pattern” ... 3 Comparison Criteria • Change in overall processing

algorithm: line shifting can be performed as line read in, on all lines after they are read, or on

demand when sorting requires a new set of shifted lines. • Change in data representation: circular

shifts can be stored explicitly or implicitly as indices into the original lines. Different data structures

can be used. • Enhancements: eliminate shifts that start with noise words (“a”, “the”), allow deletion

of lines, make system interactive • Performance: space and time. • Reuse : to what extent may

components be reused? Four well known, published and implemented solutions based on different

architectur 4 Main Program/Subroutine with Shared Data 5 Main Program/Subroutine with Shared

Data • Four basic functions: Input, Shift, Alphabetise, Output. • Main Program controls these

Components and sequences them in turn. • Data is communicated through shared storage:

Characters, Index, Alphabetised Index. • M o d ule Input reads the input lines and stores in

Characters data structure. • Circular Shift directly accesses Characters to build Index data structure.

Each entry in Index identifies the address of circular shift in Characters. • Alphabetiser directly

accesses Characters and Index to build Alphabetised Index. This contains an ordered set of indices

into Characters. • Output directly accesses Alphabetised Index and Characters to output the ordered,

shifted titles. 6 Main Program/Subroutine with Shared Data Strengths: • Efficient use of space (and

time) - computations share same data • Intuitive appeal - natural solution? • Enhancements based on

shared data easily accommodated e.g. removing shifts starting with noise words. Weaknesses: •

Change of data representation affects all modules - all modules take advantage of explicit data

representation - no information hiding. • Not particularly supportive of reuse - explicit references to

data structures and other functions. Tight coupling. • Changes to overall processing algorithm –

depends on nature of change. 7 Abstract Data Type (OO) System I/O Subprogram Call 8 Abstract

Data Type (OO) • Similar set of modules to Shared Data Architecture. • Control algorithm is similar.

• Key Difference: Data not directly shared - data accessed only through module interfaces. • Circular

Shifts and Alphabetic Shifts typically hide shifted/sorted copies of the original lines (although

Parnas’ 1972 solution avoided this).

3. Quality attributes are the overall factors that affect run-time behavior, system design, and

user experience. They represent areas of concern that have the potential for application

wide impact across layers and tiers. Some of these attributes are related to the overall

system design, while others are specific to run time, design time, or user centric issues. The

extent to which the application possesses a desired combination of quality attributes such

as usability, performance, reliability, and security indicates the success of the design and the

overall quality of the software application.

When designing applications to meet any of the quality attributes requirements, it is

necessary to consider the potential impact on other requirements. You must analyze the

tradeoffs between multiple quality attributes. The importance or priority of each quality

attribute differs from system to system; for example, interoperability will often be less

important in a single use packaged retail application than in a line of business (LOB) system.

Common Quality Attributes

The following table describes the quality attributes covered in this chapter. It categorizes the

attributes in four specific areas linked to design, runtime, system, and user qualities. Use this table

to understand what each of the quality attributes means in terms of your application design.

Category

Quality

attribute Description

Design
Qualities

Conceptual

Integrity

Conceptual integrity defines the consistency and coherence of the

overall design. This includes the way that components or modules

are designed, as well as factors such as coding style and variable

naming.

Maintainability Maintainability is the ability of the system to undergo changes

with a degree of ease. These changes could impact components,

services, features, and interfaces when adding or changing the

functionality, fixing errors, and meeting new business

requirements.

Reusability Reusability defines the capability for components and subsystems

to be suitable for use in other applications and in other scenarios.

Reusability minimizes the duplication of components and also the

implementation time.

Run-time
Qualities

Availability Availability defines the proportion of time that the system is

functional and working. It can be measured as a percentage of the

total system downtime over a predefined period. Availability will

be affected by system errors, infrastructure problems, malicious

attacks, and system load.

Interoperability Interoperability is the ability of a system or different systems to

operate successfully by communicating and exchanging

information with other external systems written and run by

external parties. An interoperable system makes it easier to

exchange and reuse information internally as well as externally.

Manageability Manageability defines how easy it is for system administrators to

manage the application, usually through sufficient and useful

instrumentation exposed for use in monitoring systems and for

debugging and performance tuning.

Performance Performance is an indication of the responsiveness of a system to

execute any action within a given time interval. It can be

measured in terms of latency or throughput. Latency is the time

taken to respond to any event. Throughput is the number of events

that take place within a given amount of time.

Reliability Reliability is the ability of a system to remain operational over

time. Reliability is measured as the probability that a system will

not fail to perform its intended functions over a specified time

interval.

Scalability Scalability is ability of a system to either handle increases in load

without impact on the performance of the system, or the ability to

be readily enlarged.

Security Security is the capability of a system to prevent malicious or

accidental actions outside of the designed usage, and to prevent

disclosure or loss of information. A secure system aims to protect

assets and prevent unauthorized modification of information.

System
Qualities

Supportability Supportability is the ability of the system to provide information

helpful for identifying and resolving issues when it fails to work

correctly.

Testability Testability is a measure of how easy it is to create test criteria for

the system and its components, and to execute these tests in order

to determine if the criteria are met. Good testability makes it more

likely that faults in a system can be isolated in a timely and

effective manner.

User
Qualities

Usability Usability defines how well the application meets the requirements

of the user and consumer by being intuitive, easy to localize and

globalize, providing good access for disabled users, and resulting

in a good overall user experience.

4. Blackboard architecture pattern:

Blackboard: Three major parts: Knowledge sources: Separate, independent parcels of application –

dependents knowledge. Blackboard data structure: Problem solving state data, organized into an

application-dependent hierarchy Control: Driven entirely by the state of blackboard Invocation of a

knowledge source (ks) is triggered by the state of blackboard. The actual focus of control can be

in - knowledge source - blackboard - Separate module or - combination of these Blackboard

systems have traditionally been used for application requiring complex interpretation of signal

processing like speech recognition, pattern recognition

The blackboard pattern provides effective solutions for designing and implementing complex systems
where heterogeneous modules have to be dynamically combined to solve a problem. This provides non-
functional properties such as:

Reusability

Changeability

robustness.[2]

The blackboard pattern allows multiple processes to work closer together on separate threads, polling
and reacting when necessary.

5. MVC

https://en.wikipedia.org/wiki/Blackboard_(design_pattern)#cite_note-:tcpbms-2

MODEL-VIEW-CONTROLLER (MVC) MVC architectural pattern divides an interactive

application into three components. The model contains the core functionality and data. Views

display information to the user. Controllers handle user input. Views and controllers together

comprise the user interface. A change propagation mechanism ensures consistence between the user

interface and the model.

The model defines what data the app should contain. If the state of this data changes, then the model

will usually notify the view (so the display can change as needed) and sometimes the controller (if

different logic is needed to control the updated view).Going back to our shopping list app, the model

would specify what data the list items should contain — item, price, etc. — and what list items are

already present.

The view defines how the app's data should be displayed.In our shopping list app, the view would

define how the list is presented to the user, and receive the data to display from the model.The

controller contains logic that updates the model and/or view in response to input from the users of

the app.

So for example, our shopping list could have input forms and buttons that allow us to add or delete

items. These actions require the model to be updated, so the input is sent to the controller, which then

manipulates the model as appropriate, which then sends updated data to the view.You might however

also want to just update the view to display the data in a different format, e.g., change the item order

to alphabetical, or lowest to highest price. In this case the controller could handle this directly

without needing to update the model.

6. a method for designing an architecture to satisfy both quality requirements and functional requirements.
We call this method Attribute-Driven Design (ADD). ADD takes as input a set of quality attribute
scenarios and employs knowledge about the relation between quality attribute achievement and
architecture in order to design the architecture. The ADD method can be viewed as an extension to most
other development methods, such as the Rational Unified Process. The Rational Unified Process has
several steps that result in the high-level design of an architecture but then proceeds to detailed design

and implementation. Incorporating ADD into it involves modifying the steps dealing with the high-level
design of the architecture and then following the process as described by Rational.

ATTRIBUTE-DRIVEN DESIGN

ADD is an approach to defining a software architecture that bases the decomposition process on the quality
attributes the software has to fulfill. It is a recursive decomposition process where, at each stage, tactics and
architectural patterns are chosen to satisfy a set of quality scenarios and then functionality is allocated to
instantiate the module types provided by the pattern. ADD is positioned in the life cycle after requirements
analysis and, as we have said, can begin when the architectural drivers are known with some confidence.

The output of ADD is the first several levels of a module decomposition view of an architecture and other views
as appropriate. Not all details of the views result from an application of ADD; the system is described as a set of
containers for functionality and the interactions among them. This is the first articulation of architecture during
the design process and is therefore necessarily coarse grained. Nevertheless, it is critical for achieving the
desired qualities, and it provides a framework for achieving the functionality. The difference between an
architecture resulting from ADD and one ready for implementation rests in the more detailed design decisions
that need to be made. These could be, for example, the decision to use specific object-oriented design patterns
or a specific piece of middleware that brings with it many architectural constraints. The architecture designed by
ADD may have intentionally deferred this decision to be more flexible.

There are a number of different design processes that could be created using the general scenarios of Chapter 4
and the tactics and patterns of Chapter 5. Each process assumes different things about how to "chunk" the
design work and about the essence of the design process. We discuss ADD in some detail to illustrate how we
are applying the general scenarios and tactics, and hence how we are "chunking" the work, and what we believe
is the essence of the design process.

We demonstrate the ADD method by using it to design a product line architecture for a garage door opener
within a home information system. The opener is responsible for raising and lowering the door via a switch,
remote control, or the home information system. It is also possible to diagnose problems with the opener from
within the home information system.

Sample Input

The input to ADD is a set of requirements. ADD assumes functional requirements (typically expressed as use
cases) and constraints as input, as do other design methods. However, in ADD, we differ from those methods in
our treatment of quality requirements. ADD mandates that quality requirements be expressed as a set of
system-specific quality scenarios. The general scenarios discussed in Chapter 4 act as input to the requirements
process and provide a checklist to be used in developing the system-specific scenarios. System-specific
scenarios should be defined to the detail necessary for the application. In our examples, we omit several
portions of a fully fleshed scenario since these portions do not contribute to the design process.

For our garage door example, the quality scenarios include the following:

 The device and controls for opening and closing the door are different for the various products in the
product line, as already mentioned. They may include controls from within a home information system.
The product architecture for a specific set of controls should be directly derivable from the product line
architecture.

 The processor used in different products will differ. The product architecture for each specific processor
should be directly derivable from the product line architecture.

 If an obstacle (person or object) is detected by the garage door during descent, it must halt (alternately
re-open) within 0.1 second.

 The garage door opener should be accessible for diagnosis and administration from within the home
information system using a product-specific diagnosis protocol. It should be possible to directly produce
an architecture that reflects this protocol.

Beginning ADD

We have already introduced architectural drivers. ADD depends on the identification of the drivers and can start
as soon as all of them are known. Of course, during the design the determination of which architectural drivers
are key may change either as a result of better understanding of the requirements or as a result of changing
requirements. Still, the process can begin when the driver requirements are known with some assurance.

In the following section we discuss ADD itself.

ADD Steps

We begin by briefly presenting the steps performed when designing an architecture using the ADD method. We
will then discuss the steps in more detail.

1. Choose the module to decompose. The module to start with is usually the whole system. All required
inputs for this module should be available (constraints, functional requirements, quality requirements).

2. Refine the module according to these steps:

a. Choose the architectural drivers from the set of concrete quality scenarios and functional

requirements. This step determines what is important for this decomposition.

b. Choose an architectural pattern that satisfies the architectural drivers. Create (or select) the
pattern based on the tactics that can be used to achieve the drivers. Identify child modules
required to implement the tactics.

c. Instantiate modules and allocate functionality from the use cases and represent using multiple

views.

d. Define interfaces of the child modules. The decomposition provides modules and constraints on
the types of module interactions. Document this information in the interface document for each
module.

e. Verify and refine use cases and quality scenarios and make them constraints for the child
modules. This step verifies that nothing important was forgotten and prepares the child modules
for further decomposition or implementation.

3. Repeat the steps above for every module that needs further decomposition.

1 Choose the Module to Decompose

The following are all modules: system, subsystem, and submodule. The decomposition typically starts with the
system, which is then decomposed into subsystems, which are further decomposed into submodules.

In our example, the garage door opener is the system. One constraint at this level is that the opener must
interoperate with the home information system.

2.a Choose the Architectural Drivers

As we said, architectural drivers are the combination of functional and quality requirements that "shape" the
architecture or the particular module under consideration. The drivers will be found among the top-priority

requirements for the module.

In our example, the four scenarios we have shown are architectural drivers. In the systems on which this
example is based, there were dozens of quality scenarios. In examining them, we see a requirement for real-
time performance,[1] and modifiability to support product lines. We also see a requirement that online diagnosis
be supported. All of these requirements must be addressed in the initial decomposition of the system.

[1] A 0.1-second response when an obstacle is detected may not seem like a tight deadline,
but we are discussing a mass market where using a processor with limited power
translates into substantial cost savings. Also, a garage door has a great deal of inertia and
is difficult to stop.
The determination of architectural drivers is not always a top-down process. Sometimes detailed investigation is
required to understand the ramifications of particular requirements. For example, to determine if performance is
an issue for a particular system configuration, a prototypical implementation of a piece of the system may be
required. In our example, determining that the performance requirement is an architectural driver requires
examining the mechanics of a garage door and the speed of the potential processors.

We will base our decomposition of a module on the architectural drivers. Other requirements apply to that
module, but, by choosing the drivers, we are reducing the problem to satisfying the most important ones. We do
not treat all of the requirements as equal; the less important requirements are satisfied within the constraints of

the most important. This is a significant difference between ADD and other architecture design methods.

2.b Choose an Architectural Pattern

As discussed in Chapter 5, for each quality there are identifiable tactics (and patterns that implement these
tactics) that can be used in an architecture design to achieve a specific quality. Each tactic is designed to realize
one or more quality attributes, but the patterns in which they are embedded have an impact on other quality
attributes. In an architecture design, a composition of many such tactics is used to achieve a balance between

the required multiple qualities. Achievement of the quality and functional requirements is analyzed during the
refinement step.

The goal of step 2b is to establish an overall architectural pattern consisting of module types. The pattern
satisfies the architectural drivers and is constructed by composing selected tactics. Two main factors guide tactic
selection. The first is the drivers themselves. The second is the side effects that a pattern implementing a tactic
has on other qualities.

7. The Reflection architectural pattern provides a mechanism for changing structure and behavior of

software systems dynamically. It supports the modification of fundamental aspects such as type

structures and function call mechanisms. In this pattern, an application is split into two parts. A

meta level provides information about selected system properties and makes the software self-aware.

A base level includes the application logic. Its implementation builds on the meta level. Changes

to information kept in the meta level affect subsequent base-level behavior.

Support for variation is the key to sustainable architectures for long-lived applications. – Over time

they must respond to evolving and changing technologies, requirements, and platforms. However, it

is hard to forecast what can vary in an application and when it must respond to a specific variation

request. The need for variation can occur at any time, specifically while the application is in

productive use. Variations can also be of any scale, ranging from local adjustments of an algorithm

to fundamental modifications of distribution infrastructure. The complexity associated with

particular variations should be hidden from maintainers, and there should be a uniform mechanism

for supporting different types of variation.

Designing a system that meets a wide range of different requirements a priori can be an

overwhelming task. A better solution is to specify an architecture that is open to modification and

extension. The resulting system can then be adapted to changing requirements on demand. In

other words, we want to design for change and evolution.

Changing software is tedious, error prone, and often expensive. – Wide-ranging modifications

usually spread over many components and even local changes within one component can affect other

parts of the system. – Every change must be implemented and tested carefully. – Software which

actively supports and controls its own modification can be changed more effectively and more

safely. Adaptable software systems usually have a complex inner structure. – Aspects that are

subject to change are encapsulated within separate components. – The implementation of application

services is spread over many small components with different interrelationships. – To keep such

systems maintainable, we prefer to hide this complexity from maintainers of the system.

The more techniques that are necessary for keeping a system changeable, such as parameterization,

subclassing, or even copy and paste, the more awkward and complex its modification becomes. – A

uniform mechanism that applies to all kinds of changes is easier to use and understand. Changes can

be of any scale, from providing shortcuts for commonly-used commands to adapting an application

framework for a specific customer. Even fundamental aspects of software systems can change, for

example the communication mechanisms between components.

Solution Encapsulate information about properties and variant aspects of the application’s

structure, behavior, and state into a set of meta-objects. Separate the meta-objects from the core

application logic via a two-layer architecture: – The meta level contains the meta-objects – The base

level contains the application logic. Base-level objects consult an appropriate metaobject before

they execute behavior or access state that potentially can vary.

Solution (2) The meta level provides a self-representation of the software to give it knowledge of

its own structure and behavior, and consists of so-called meta-objects. Meta-objects encapsulate and

represent information about the software. Examples include type structures, algorithms, or even

function call mechanisms. The base level defines the application logic. Its implementation uses the

meta-objects to remain independent of those aspects that are likely to change. – For example, in a

distributed application, base-level components might only communicate with each other via a meta-

object that implements a specific user-defined messaging mechanism. – Changing this meta-object

changes the way in which base-level components communicate, but without modifying the baselevel

code.

Meta-Object Protocol The meta level also implements a meta-object protocol (MOP), which is a

specialized interface that administrators, maintainers, or even other systems can use to dynamically

configure and modify the meta-objects in well defined way. Since the base-level implementation

explicitly builds upon information and services provided by meta-objects, changing them has an

immediate effect on the subsequent behavior of the base level.

Meta-Object Protocol (2) When extending the software, you pass the new code to the meta level as

a parameter of the meta-object protocol. The meta-object protocol itself is responsible for

integrating all change requests. – It performs modifications and extensions to meta-level code, and if

necessary re-compiles the changed parts and links them to the application while it is executing. This

provides a reflective application with explicit control over its own modification.

8. MS pattern

The Master-Slave pattern is often used for multi-threaded applications in which many instances of

the same problem must be solved. (Travelling Salesman Problem, for example.) The master creates

and launches slaves to solve these instances in "parallel". When all of the slaves have finished, the

master harvests the results.

Master-Slave pattern is also used for user interfaces and servers. In both cases the master listens for

commands coming either from the user or from clients. When a command is received, a slave is

launched to execute the command while the master resumes listening for more commands (such as

the "suspend the last command" command.)

	Common Quality Attributes
	ATTRIBUTE-DRIVEN DESIGN
	Sample Input
	Beginning ADD
	ADD Steps
	1 Choose the Module to Decompose
	2.a Choose the Architectural Drivers
	2.b Choose an Architectural Pattern

