

USN

Internal Assessment Test III– May 2018

Sub: Software Architectures Sub Code: 10IS81 Branch: CSE

Date: 21/05/18 Duration: 90 min’s Max Marks: 50 Sem / Sec: VIII/A,B,C OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

1 Enumerate the implementation of microkernel architectural pattern. [10] CO3 L3

2 List out and explain the components of Micro kernel architectural pattern. [10] CO3 L3

3 Discuss in detail the structure of whole part design pattern and its implementation.

[10] CO4 L2

4 Explain in detail the components and six phases of dynamic scenarios of master

slave design pattern.

[10] CO4 L3

5 Define proxy design pattern. Discuss the implementation steps to carry out the
proxy pattern.

[10] CO4 L2

USN

Internal Assessment Test II – April 2018

Sub: Software Architectures Sub Code: 10IS81 Branch: CSE

Date: 21/05/18 Duration: 90 min’s Max Marks: 50 Sem / Sec: VIII/A,B,C OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

1 Enumerate the implementation of microkernel architectural pattern. [10] CO3 L3

2 List out and explain the components of Micro kernel architectural pattern. [10] CO3 L3

3 Discuss in detail the structure of whole part design pattern and its implementation.

[10] CO4 L2

4 Explain in detail the components and six phases of dynamic scenarios of master

slave design pattern.

[10] CO4 L3

5 Define proxy design pattern. Discuss the implementation steps to carry out the
proxy pattern.

[10] CO4 L2

6 Explain the steps involved in designing an architecture using the ADD method. [10] CO5 L3

7 List and explain the steps in choosing and documenting a view. [10] CO5 L3

6 Explain the steps involved in designing an architecture using the ADD method. [10] CO5 L3

7 List and explain the steps in choosing and documenting a view. [10] CO5 L3

Scheme and solution

Question # Description Marks

Distribution

Max Marks

1

Implementation of microkernel architectural
pattern.

10M

10M

10M

2

List & explanation of components of Micro
kernel architectural pattern.

10M

10M

10M

3

The structure of whole part design pattern
and
its implementation

5M

5M

10M

10M

4

The components
Six phases of dynamic scenarios of master slave
design pattern.

5M

5M

10M

10M

5

Define proxy design pattern.

The implementation steps to carry out the

proxy pattern

5M

5M

10M 10M

6

The steps involved in designing an architecture
using the ADD method

10M

10M

10M

7

List and explanation of the steps in choosing
and documenting a view.

4 M

6 M

10M

10M

1>
Implementation:
1. Analyze the application domain:
Perform a domain analysis and identify the core functionality necessary for implementing ext servers. 2.
Analyze external servers
That is polices ext servers are going to provide 3. Categorize the services
Group all functionality into semantically independent categories. 4. Partition the categories
Separate the categories into services that should be part of the microkernel, and those that should be available
as internal servers.
5. Find a consistent and complete set of operations and abstractions for every category you identified in
step 1.
6. Determine the strategies for request transmission and retrieval.

ies the microkernel should provide for communication b/w components.
7.

Structure the microkernel component
Design the microkernel using the layers pattern to separate system-specific parts from system-independent
parts of the kernel.
8. Specify the programming interfaces of microkernel
To do so, you need to decide how these interfaces should be accessible externally.
You must take into an account whether the microkernel is implemented as a separate process or as a module
that is physically shared by other component in the latter case, you can use conventional method calls to invoke
the methods of the microkernel.
9. The microkernel is responsible for managing all system resources such as memory blocks, devices or
device contexts - a handle to an output area in a GUI implementation.
10. Design and implement the internal servers as separate processes or shared libraries

-9, because some of the microkernel services need to access internal
servers.

Active servers are implemented as processes
Passive servers as shared libraries.

process waits in an event loop for incoming requests.
11 Implement the external servers

internal architecture of an external server depends on the policies it comprises
12. Implement the adapters

task of an adapter is to provide operations to its clients that are forwarded to an external server.

complication or as a shared library dynamically linked to the client on demand.

2>

o The microkernel represents the main component of the pattern.
o It implements central services such as communication facilities or resource handling.
o The microkernel is also responsible for maintaining system resources such as processes or files. o It
controls and coordinates the access to these resources.
o A microkernel implements atomic services, which we refer to as mechanisms.
o These mechanisms serve as a fundamental base on which more complex functionality called policies are
constructed.

An internal server (subsystem)
o Extends the functionality provided by microkernel.
o It represents a separate component that offers additional functionality.
o Microkernel invokes the functionality of internal services via service requests.
o Therefore internal servers can encapsulates some dependencies on the underlying hardware or software
system.

An external server (personality)
o Uses the microkernel for implementing its own view of the underlying application domain. o Each external
server runs in separate process.
o It receives service requests from client applications using the communication facilities provided by the
microkernel, interprets these requests, executes the appropriate services, and returns its results to clients.
o Different external servers implement different policies for specific application domains.

 Client:

o It is an application that is associated with exactly one external server. It only accesses the programming
interfaces provided by the external server.
o Problem arises if a client accesses the interfaces of its external server directly (direct dependency) Such
a system does not support changeability
If ext servers emulate existing application platforms clients will not run without modifications.

Adapter (emulator)

o Represents the interfaces b/w clients and their external servers and allow clients to access the services of
their external server in a portable way.
o They are part of the clients address space.

o The following OMT diagram shows the static structure of a microkernel system.

3>

 WHOLE-PART
Whole-part design pattern helps with the aggregation of components that together form a semantic unit.
An aggregate component, the whole, encapsulates its constituent components, the parts, organizes their
collaboration, and provides a common interface to its functionality. Direct access to the parts is not possible.
Example:
A computer-aided design (CAD) system for 2-D and 3-D modelling allows engineers to design graphical objects
interactively. For example, a car object aggregates several smaller objects such as wheels and windows, which

The Whole-Part pattern introduces two types of participant: Whole
Whole object represents an aggregation of smaller objects, which we call parts.
It forms a semantic grouping of its parts in that it co ordinates and organizes their collaboration.
Some methods of whole may be just place holder for specific part services when such a method is invoked the
whole only calls the relevant part services, and returns the result to the client.
part

Each part object is embedded in exactly one whole. Two or more parts cannot share the same part. Each part is
created and destroyed within the life span of the whole.

Implementation:
1. Design the public interface of the whole
Analyze the functionality the whole must offer to its clients. Only consider the clients view point in this
step.
Think of the whole as an atomic component that is not structured into parts. 2. Separate the whole into
parts, or synthesize it from existing ones.
There are two approaches to assembling the parts either assemble a whole ‘bottom-up’ from existing parts,
or decompose it ‘top-down’ into smaller parts.
Mixtures of both approaches is often applied
3. If you follow a bottom up approach, use existing parts from component libraries or class libraries and
specify their collaboration.
4. If you follow a top down approach, partition the Wholes services into smaller collaborating services
and map these collaborating services to separate parts.
5. Specify the services of the whole in terms of services of the parts.
Decide whether all part services are called only by their whole, or if parts may also call each other. Two are two
possible ways to call a Part service:
@ If a client request is forwarded to a Part service, the Part does not use any knowledge about the execution
context of the Whole, relying on its own environment instead.
@ A delegation approach requires the Whole to pass its own context information to the Part. 6. Implement the
parts
If parts are whole-part structures themselves, design them recursively starting with step1 . if not reuse existing
parts from a library.
7. Implement the whole
Implement services that depend on part objects by invoking their services from the whole.

4>

Dynamics:
The scenario comprises six phases:

A client requests a service from the master.
-tasks.

-tasks to several slave instances, starts their execution and
waits for the results they return.

-tasks and return the results of their computation back to the
master.

d from the slaves.
The master returns this result to the client.

5>

Proxy design pattern makes the clients of a component communicate with a representative rather than to the
component itself. Introducing such a place holder can serve many purposes, including enhanced efficiency, easier
access and protection from unauthorized access.
Example:
Company engineering staff regularly consults databases for information about material providers, available
parts, blueprints, and so on. Every remote access may be costly, while many accesses are similar or identical
and are repeated often. This situation clearly offers scope for optimization of access time and cost.

Implementation:
1. Identify all responsibilities for dealing with access control to a component Attach these responsibilities
to a separate component the proxy.

2. If possible introduce an abstract base class that specifies the common parts of the interfaces of both
the proxy and the original.
Derive the proxy and the original from this abstract base. 3. Implement the proxy’s functions
To this end check the roles specified in the first step
4. Free the original and its client from responsibilities that have migrated into the proxy.
5. Associate the proxy and the original by giving the proxy a handle to the original. This handle may be a
pointer a reference an address an identifier, a socket, a port, and so on.
6. Remove all direct relationships between the original and its client Replace them by analogous relationships to

the proxy.

6>

ADD Steps:
Steps involved in attribute driven design (ADD) 1. Choose the module to decompose
o Start with entire system
o Inputs for this module need to be available
o Constraints, functional and quality requirements 2. Refine the module
a) Choose architectural drivers relevant to this decomposition b) Choose architectural pattern that satisfies
these drivers
c) Instantiate modules and allocate functionality from use cases representing using multiple views d) Define
interfaces of child modules
e) Verify and refine use cases and quality scenarios 3. Repeat for every module that needs further decomposition

Discussion of the above steps in more detail:
 1. Choose The Module To Decompose
o the following are the modules: system->subsystem->submodule

o Decomposition typically starts with system, which then decompose into subsystem and then into sub-
modules.
o In our Example, the garage door opener is a system

o Opener must interoperate with the home information system

2. Refine the module
1. Choose Architectural Drivers:
o choose the architectural drivers from the quality scenarios and functional requirements o The drivers will
be among the top priority requirements for the module.
o In the garage system, the 4 scenarios were architectural drivers, o By examining them, we see
Real-time performance requirement
Modifiability requirement to support product line o Requirements are not treated as equals
o Less important requirements are satisfied within constraints obtained by satisfying more important
requirements
o This is a difference of ADD from other architecture design methods
2. Choose Architectural Pattern
o For each quality requirement there are identifiable tactics and then identifiable patterns that implement
these tactics.
o The goal of this step is to establish an overall architectural pattern for the module
o The pattern needs to satisfy the architectural pattern for the module tactics selected to satisfy the drivers
o Two factors involved in selecting tactics: Architectural drivers themselves
Side effects of the pattern implementing the tactic on other requirements o This yields the following
tactics:
Semantic coherence and information hiding. Separate responsibilities dealing with the user interface,
communication, and sensors into their own modules.
Increase computational efficiency. The performance-critical computations should be made as efficient as
possible.
Schedule wisely. The performance-critical computations should be scheduled to ensure the achievement of the
timing deadline.

3. Instantiate Modules And Allocate Functionality Using Multiple Views Instantiate modules
The non-performance-critical module of Figure 7.2 becomes instantiated as diagnosis and raising/lowering
door modules in Figure 7.3. We also identify several responsibilities of the virtual machine: communication and
sensor reading and actuator control. This yields two instances of the virtual machine that are also shown in
Figure 7.3.

Allocate functionality
Assigning responsibilities to the children in a decomposition also leads to the discovery of necessary
information exchange. At this point in the design, it is not important to define how the information is
exchanged. Is the information pushed or pulled? Is it passed as a message or a call parameter? These are all
questions that need to be answered later in the design process. At this point only the information itself and the
producer and consumer roles are of interest

Figure 7.3.

 Represent the architecture with multiple views
Module decomposition view
Concurrency view

at the same time

Deployment view
4. Define Interfaces Of Child Modules
o It documents what this module provides to others.
o Module
view:
Producers/consumers relations patterns of communication

Concurrency view:
Interactions among threads Synchronization information

Deployment view
Hardware requirement Timing requirements
Communication requirements
5. Verify And Refine Use Cases And Quality Scenarios As Constraints For The Child Modules
 o Functional requirements
Using functional requirements to verify and refine
Decomposing functional requirements assigns responsibilities to child modules We can use these
responsibilities to generate use cases for the child module
User interface:

Handle user requests
lay responses

Raising/lowering door module

Obstacle detection:

Communication virtual machine

Scheduler
Guarantee that deadlines are met when obstacle is detected Sensor/actuator virtual machine
Manage interactions with sensors/actuators Diagnosis:
Manage diagnosis interaction with HIS

o Constraints:
The decomposition satisfies the constraint
OS constraint-

Constraint is inherited by the child module
The constraint is satisfied by a collection of child modules
E.g., using client and server modules to satisfy a communication constraint
o Quality scenarios:
Quality scenarios also need to be verified and assigned to child modules
A quality scenario may be satisfied by the decomposition itself, i.e, no additional impact on child modules
A quality scenario may be satisfied by the decomposition but generating constraints for the children
The decomposition may be “neutral” with respect to a quality scenario
A quality scenario may not be satisfied with the current decomposition

7>
A view simply represents a set of system elements and relationships among them, so whatever elements and
relationships you deem useful to a segment of the stakeholder community constitute a valid view.
Here is a simple 3 step procedure for choosing the views for your project.
1. Produce a candidate view list:
Begin by building a stakeholder/view table. Your stakeholder list is likely to be different from the one in the
table as shown below, but be as comprehensive as you can. For the columns, enumerate the views that apply to
your system. Some views apply to every system, while others only apply to systems designed that way. Once
you have rows and columns defined, fill in each cell to describe how much information the stakeholder requires
from the view: none, overview only, moderate detail, or high detail.

2. Combine views:
The candidate view list from step 1 is likely to yield an impractically large number of views. To reduce the list
to a manageable size, first look for views in the table that require only overview depth or that serve very few
stakeholders. See if the stakeholders could be equally well served by another view having a stronger
consistency. Next, look for the views that are good candidates to be combined- that is, a view that gives
information from two or more views at once. For small and medium projects, the implementation view is often
easily overlaid with the module decomposition view. The module decomposition view also pairs well with
users or layered views. Finally, the deployment view usually combines well with whatever component-and-
connector view shows the components that are allocated to hardware elements.
3. Prioritize:
After step 2 you should have an appropriate set of views to serve your stakeholder community. At this point
you need to decide what to do first. How you decide depends on the details specific project. But, remember that
you don’t have to complete one view before starting another. People can make progress with overview-level
information, so a breadth-first approach is often the best. Also, some stakeholders’ interests supersede others.

DOCUMENTING A VIEW

Primary presentation- elements and their relationships, contains main information about these system ,
usually graphical or tabular.

Element catalog- Context diagram- how the
system relates to its environment

Variability guide- how to exercise any variation points a variability guide should include documentation
about each point of variation in the architecture, including
o The options among which a choice is to be made
o The binding time of the option. Some choices are made at design time, some at build time, and others at
runtime.

Architecture background –why the design reflected in the view came to be? an architecture background
includes
o rationale, explaining why the decisions reflected in the view were made and why alternatives were rejected
o analysis results, which justify the design or explain what would have to change in the face of a modification

o assumptions reflected in the design
Glossary of terms used in the views, with a brief description of each.
Other information includes management information such as authorship, configuration control data, and

change histories. Or the architect might record references to specific sections of a requirements document to
establish traceability

DOCUMENTING BEHAVIOR
Views present structural information about the system. However, structural information is not sufficient to
allow reasoning about some system properties .behavior description add information that reveals the ordering
of interactions among the elements, opportunities for concurrency, and time dependencies of interactions.
Behavior can be documented either about an ensemble of elements working in concert. Exactly what to
model will depend on the type of system being designed.
Different modeling techniques and notations are used depending on the type of analysis to be performed. In
UML, sequence diagrams and state charts are examples of behavioral descriptions. These notations are widely
used.

DOCUMENTING INTERFACES
An interface is a boundary across which two independent entities meet and interact or communicate with each
other.

1. Interface identify
When an element has multiple interfaces, identify the individual interfaces to distinguish them. This usually
means naming them. You may also need to provide a version number.
2. Resources provided:

The heart of an interface document is the resources that the element provides. Resource syntax – this is the
resource’s signature
Resource Semantics:

s in state

Resource Usage Restrictions

3. Data type definitions:

If used if any interface resources employ a data type other than one provided by the underlying programming
language, the architect needs to communicate the definition of that type. If it is defined by another element,
then reference to the definition in that element’s documentation is sufficient.
4. Exception definitions:
These describe exceptions that can be raised by the resources on the interface. Since the same exception might
be raised by more than one resource, if it is convenient to simply list each resource’s exceptions but define
them in a dictionary collected separately.
5. Variability provided by the interface.
Does the interface allow the element to be configured in some way? These configuration parameters and how
they affect the semantics of the interface must be documented.
6. Quality attribute characteristics:
The architect needs to document what quality attribute characteristics (such as performance or reliability) the
interface makes known to the element's users
7. Element requirements:
What the element requires may be specific, named resources provided by other elements. The documentation
obligation is the same as for resources provided: syntax, semantics, and any usage restrictions.
8. Rationale and design issues:
Why these choices the architect should record the reasons for an elements interface design. The rationale
should explain the motivation behind the design, constraints and compromises, what alternatives designs were
considered.
9. Usage guide:

Item 2 and item 7 document an element's semantic information on a per resource basis. This sometimes
falls short of what is needed. In some cases semantics need to be reasoned about in terms of how a
broad number of individual interactions interrelate.

