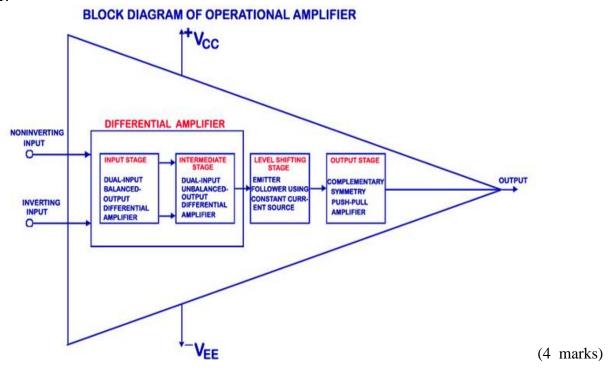
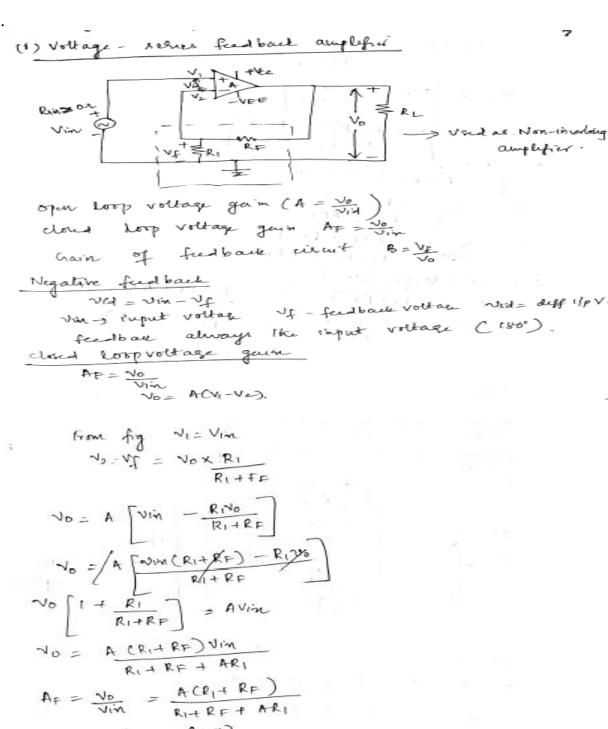
CMR INSTITUTE OF TECHNOLOGY	USN
	Internal Assesment Test - I



Internal Assesment Test - I											
Sub: OPERATIONAL AMPLIFIERS AND LINEAR ICs						Code:	15EE46				
Date:	13/03/2018	Duration:	90 mins	Max Marks:	50	Sem:	4 TH	Branch:	EEE		

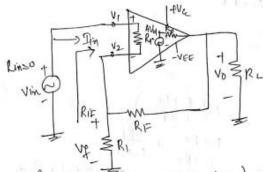
			OF	3E
		Marks	CO	RBT
1	With a block diagram explain the different stages of a typical Operational	10	CO1	L2
	amplifier. Define slew rate, CMRR and input offset voltage.			
2	Derive the expression for closed loop gain, Ideal closed loop gain, Input	10	CO1	L2
	resistance and output resistance of a voltage series feedback amplifier with			
	circuit diagrams.			
3	Demonstrate an Instrumentation amplifier with transducer bridge input. Derive	10	CO1	L2
	the expression of output voltage for the same.			
4	Design a two stage wide band pass filter and band reject filter having f _L =200Hz	10	CO6	L3
	and f _H =1kHz and pass band gain of 4.Calculate Q value and center frequency.			
	Assume capacitor values for high pass section=0.05uF and for the low pass			
	section=0.01uF.Draw the circuit diagram.			
5	For the second order LPF, show that the pass band voltage gain is equal to 1.586	10	CO6	L2
	and also obtain the expression for high cut off frequency f _H .Draw the circuit			
	diagram.			
6	A peaking amplifier has the following values $R_1=1k\Omega, L=100uH$ with a 3Ω	10	CO1	L3
	internal resistance. Given C=0.01uf, R_F =6.8k Ω ,and R_L =10k Ω . Determine (a)the			
	peak frequency f _p ,(b)the gain of the amplifier at f _p and the bandwidth of the			
	amplifier.			
7	Design a first order and second order Low pass Butterworth filter with cut off	10	CO6	L3
	frequency 1.2kHz.			
8	Explain how an Op-amp can be used as a non-inverting summer and subtractor.	10	CO1	L2

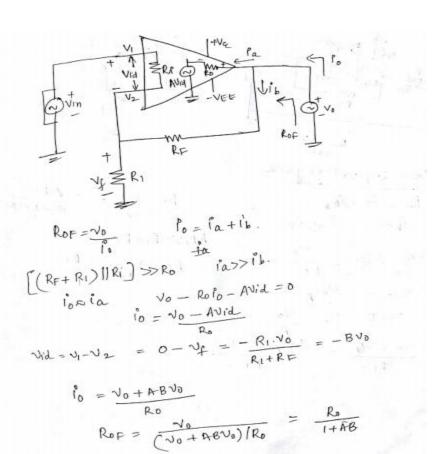
Solution

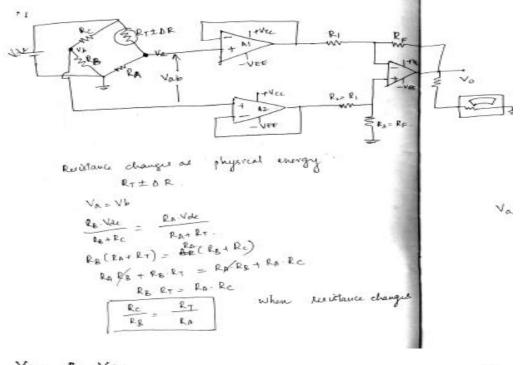

1.

Slew Rate: The slew rate is the maximum rate of change of output voltage caused by a step input voltage and is usually specified in $V/\mu S$. For example $1V/\mu S$ slew rate means that the output rises or falls by 1V in one microseconds. Ideally slew rate is infinite which means that op-amp's output should be changed instantaneously in response to input step voltage. Practical op-amps are available with slew rates from $0.1V/\mu S$ to well above $1000V/\mu S$.

CMRR: It can be defined as the ratio of the differential gain A_D to the common mode gain A_{CM} that is, $CMRR = A_D/A_{CM}$.


Input Offset Voltage Defined. The **input offset voltage** is defined as the **voltage** that must be applied between the two **input** terminals of the **op amp** to obtain zero volts at the output. (2+2+2 marks)


A is very large (10⁵)


$$AR_{1}>> (R_{1}+R_{F})$$
 so $R_{1}+R_{F}+AR_{1} \approx AR_{1}$
 $AF = \frac{N_{0}}{V_{1}N_{1}} = \frac{A(R_{1}+R_{F})}{AR_{1}} = \frac{1+R_{F}}{R_{1}}$ (ideal)

Input resistance with feed back

Rici 1/p miritance Copen-Lorg). Rif = i'mput suislance with feed ban.

$$Va = \frac{R_{D} \cdot Vde}{Ra + (R_{T} + DR)}$$

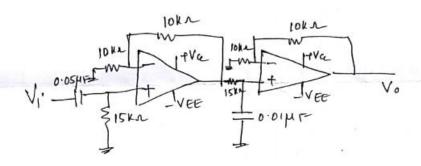
$$Vb = \frac{R_{B} \cdot Vde}{RR + RC}$$

$$Vab = \frac{R_{D} \cdot Vde}{RA + RT + DR}$$

$$R_{B} = R_{B} = R_{C} = P_{T} = R$$

$$Vab = \frac{R \cdot Vde}{R + R + RC}$$

$$\frac{R \cdot Vde}{R + R + DR}$$


$$\frac{R \cdot Vde}{R \cdot Vde}$$

4)
$$f_L = 200HZ$$
 $f_H = 1KHZ$ $A_V = 4$
 $C_1 = 0.05 \mu F$ $C_2 = 0.01 \mu F$

$$f_{L} = \frac{1}{\sqrt{\pi R_{1}C_{1}}} \qquad R_{1} = \frac{1}{\sqrt{\pi f_{L}C_{1}}} = \frac{1}{\sqrt{\pi \pi \times 200 \times 0.05 \mu F}}$$

$$= 15.91 \text{ kg}$$

$$f_{H} = \frac{1}{\sqrt{\pi R_{2}C_{2}}} \qquad R_{2} = \frac{1}{\sqrt{\pi f_{H}C_{2}}} = \frac{1}{\sqrt{\pi \times 1 \times 10^{3} \times 0.01 \times 10^{5}}}$$

5.

For deriving the expression for the cut-off frequency, let us use the Laplace transform

The input RC network can be represented in the Laplace domain as shown in g. 26.2.

$$V_{\text{in}}(s) = \begin{pmatrix} R_2 & V_1 & R_3 & V_A \\ & & & & \\ &$$

Fig. 2.6.2

$$\frac{V_{in} - V_{1}}{R_{2}} = \frac{V_{1} - V_{0}}{\left(\frac{1}{sC_{2}}\right)} + \frac{V_{1} - V_{A}}{R_{3}} \qquad \dots (2.6.2)$$

Using potential divider rule, we can write,

$$V_A = V_1 \left[\frac{\frac{1}{sC_3}}{R_3 + \frac{1}{sC_2}} \right] \dots (2.6.3)$$

$$V_{A} = \frac{V_{1}}{1 + sR_{3}C_{3}}$$

$$V_{1} = V_{A} (1 + sR_{3}C_{3})$$

$$V_{1} = V_{A} (1 + sR_{3}C_{3})$$

$$V_{2} = V_{A} (1 + sR_{3}C_{3})$$

$$V_{3} = V_{A} (1 + sR_{3}C_{3}) = \frac{V_{A} (1 + sR_{3}C_{3}) - V_{A}}{1 + sC_{2}} + \frac{V_{A} (1 + sR_{3}C_{3}) - V_{A}}{R_{3}}$$

$$\frac{V_{1}}{R_{2}} + V_{0} (sC_{2}) = V_{A} \left[\frac{(1 + sR_{3}C_{3})}{R_{2}} + sC_{2} (1 + sR_{3}C_{3}) + \frac{(1 + sR_{3}C_{3})}{R_{3}} - \frac{1}{R_{3}} \right]$$

$$\frac{V_{1}}{R_{2}} + V_{0} (sC_{2}) = V_{A} \left[\frac{R_{3}(1 + sR_{3}C_{3}) + R_{2}R_{3}sC_{2}(1 + sR_{3}C_{3}) + R_{2}(1 + sR_{3}C_{3}) - R_{2}}{R_{2}R_{3}} \right]$$

$$\frac{V_{1}}{R_{2}} + V_{0} (sC_{2}) = V_{A} \left[\frac{R_{3}(1 + sR_{3}C_{3}) + R_{2}R_{3}sC_{2}(1 + sR_{3}C_{3}) + R_{2}(1 + sR_{3}C_{3}) - R_{2}}{R_{2}R_{3}} \right]$$

$$\frac{V_{1}}{R_{2}} + V_{0} (sC_{2}) = V_{A} \left[\frac{R_{3}(1 + sR_{3}C_{3}) + R_{2}R_{3}sC_{2}(1 + sR_{3}C_{3}) + R_{2}(1 + sR_{3}C_{3}) - R_{2}}{R_{2}R_{3}} \right]$$

$$\frac{V_{1}}{R_{2}} + V_{0} (sC_{2}) = V_{A} \left[\frac{R_{3}(1 + sR_{3}C_{3}) + R_{2}R_{3}sC_{2}(1 + sR_{3}C_{3}) + R_{2}(1 + sR_{3}C_{3}) - R_{2}}{R_{2}R_{3}} \right]$$

$$\frac{V_{1}}{R_{2}} + V_{0} (sC_{2}) = V_{A} \left[\frac{R_{3}(1 + sR_{3}C_{3}) + R_{2}R_{3}sC_{2} + R_{2}}{R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) + R_{2}R_{3}C_{2}} \right] - R_{2} \left[\frac{R_{3}V_{1}}{(1 + sR_{3}C_{3}) +$$

Note: For R2 = R3 = R and C2 = C3 = C, the transfer function takes the form

$$\frac{V_{o}(s)}{V_{in}(s)} = \frac{A_{F}}{s^{2} + \frac{3 - A_{F}}{RC} s + \frac{1}{R^{2}C^{2}}} \dots (2.6.12)$$

From this we can write that,

$$\xi = \text{damping factor} = \frac{3 - A_F}{2}$$
 ... (2.6.13)

Now, for second order Butterworth filter, the middle term required is $\sqrt{2} = 1.414$, om the normalised Butterworth polynomial.

$$3 - A_F = \sqrt{2} = 1.414$$

$$A_F = 1.586$$
... (2.6.14)

Thus, to ensure the Butterworth response, it is necessary that the gain A_F is 1.586.

$$1.586 = 1 + \frac{R_f}{R_1}$$

$$R_i = 0.586 R_1$$
 ... (2.6.15)

6.

Solo a fp =
$$\frac{1}{2\pi \sqrt{Lc}} = \frac{1}{2\pi \sqrt{10^{-4} \times 10^{-8}}} = \frac{1}{2\pi \sqrt{10^{-4} \times 10^{-8}}} = \frac{1}{2\pi \sqrt{10^{-6} \times 10^{-8}}} =$$

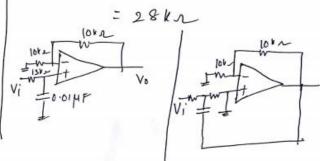
$$f = \frac{1}{\sqrt{\pi}RC}$$

$$f = 1.2 \text{ kHZ}$$

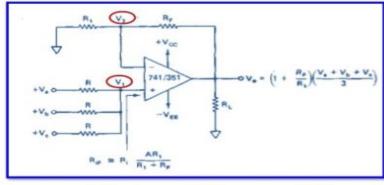
$$Cot C = 0.01 \text{ MF}$$

$$C = \frac{1}{\sqrt{\pi}fC}$$

$$= \frac{1}{2\pi \times 1.2 \times 10^{3} \times 0.01 \times 10^{6}}$$


Second order LPF

$$R_{1} = R_{2} = R$$


$$C_{1} = C_{2} = C$$

$$let \quad C = 0.0047\mu F$$

$$R = \frac{1}{\sqrt{1 \times 1.2 \times 10^{3} \times 0.0047 \times 15^{6}}}$$

8.

Non-inverting Summing Amplifier

Therefore, using the superposition theorem, the voltage $V_2 = V_1$ $V_b \& V_c = 0$. Net resistance = R+R/2

$$V_{1} = \frac{R/2}{R + R/2} V_{a} + \frac{R/2}{R + R/2} V_{b} + \frac{R/2}{R + R/2} V_{c}$$

$$V_{1} = \frac{R/2}{3R/2} V_{a} + \frac{R/2}{3R/2} V_{b} + \frac{R/2}{3R/2} V_{c}$$

$$V_{1} = \frac{V_{a}}{3} + \frac{V_{b}}{3} + \frac{V_{c}}{3} = \frac{V_{a} + V_{b} + V_{c}}{3}$$

If
$$R_F = 2R_1$$
, $1 + R_F/R_1 = 3$
 $V_0 = V_a + V_b + V_c$

Applying superposition theorem, considering Va,
$$V_b=0$$
.
$$V_{01}=-\frac{R_2}{R_1} V_a$$
 considering V_b , $V_a=0$.

$$V_{02} = \begin{pmatrix} 1 + \frac{R_2}{R_1} \end{pmatrix} V_{b_1} = \begin{pmatrix} 1 + \frac{R_2}{R_1} \end{pmatrix} \times \begin{pmatrix} \frac{R_4}{R_5 + R_4} \end{pmatrix} V_{b}$$