

Internal Assesment Test - II

Sub:	OPERATIONAL AMPLIFIERS AND LINEAR ICS Code							e:	15EE46		
Date:	17/04/2018	Duration:	90 mins	Max Marks:	50	Sem:	4th	Bran	ch:	EEE	
Answer Any FIVE FULL Questions											
							Marks	OBE			
									Warks	CO	RBT
1 D	Discuss the operation of a voltage follower regulator with the help of circuit diagram.								10	CO6	L2
Γ	Define line regulation and load regulation for a voltage regulator.										
	Demonstrate the operation of triangular/rectangular signal generator with a neat circuit							ait	10	CO5	L3
	diagram and required waveforms.										
	Design a RC phase shift oscillator to generate a sinusoidal output of 1000Hz and sup								10	CO5	L3
	voltage ±15V using uA 741 op-amp. Explain the method to attain output amplitude in RC										
	phase shift oscillator with circuit diagram.										
	Design a non inverting Schmitt trigger to have UTP=+2V and L						LTP=-3V using uA741			CO4	L3
	Op-amp with supply voltage Vcc=±15V.										
	Explain the circuit of a full wave precision rectifier using half wave rectifier and						10	CO3	L2		
	summing circuit. Demonstrate the input and output waveforms.										
	Transfer of the state of the st									CO3	L2
	ositive reference volta	ige with circu	it diagram	and necessary	wavefor	ms.					
7	Demonstrate the operation of inverting Schmitt trigger with a neat circuit diagram,								10	CO4	L3
W	waveforms and input-output characteristics.										
	1	•									

Tringular/sectorgular wave generalor

At the to the integrator output took UTP and At College Book the schroutt brigger output to ext + Wessel.

The posters unlings to the indegrador counts covered It to flow through Ry and Cs. It changes Cs positive on the left. and a regular on the right, then producing a regular going roup output from the integrator swarp to to.

At time to, the room vellage entires at the sciuniti LPF.

The about adopt immediately swellers from the sciuniti LPF.

The about adopt immediately swellers from these to "Velan" and recharged and reversus the direction of T. C. it has discharged and recharged with the objects polarity, generating a tre going temp output voltage. The pestive going temp continues desiring time interval to to to will it revives at scientit UTF.

At this point, the scientiti output switches to treated once organ and the cycle recommendes.

The circuit is a free morning signal generator producing triangular and square output wareforms.

Expressions

or the equation used to calculate the capacitor rated.

Here, It = I(cross)

At = FW(cross) [Maximum gade usidth]

(2) Integrater output

$$A_{1}(t) = -\frac{1}{2^{3}} \left\{ A_{2}(t) \cdot y_{1} + A_{2}(t) \right\} + A_{3}(t)$$
Here, $t = (t^{3} - y_{1})$

4) UTP = +2V LTP = -3V
$$R_1 = UTP = \frac{2}{\Gamma_1} = \frac{4 \, \text{K} \cdot \text{N}}{(3.9 \, \text{Ka})} \quad \text{Vi} \quad \text{W} \quad \text{Fr} \quad \text{Vee} \quad \text{Vo}$$

$$R_{2} = \frac{(V_{0}-V_{0}) \times R_{1}}{UTP} = \frac{4s(14-0.7) \times 3.9 \times 10^{3}}{2}$$

$$= 2s \text{ f.r. } (27 \text{ f.s.})$$

$$R_{3} = (V_{\text{sat}}-V_{0}) \times R_{1}$$

$$= (14-0.7) \times 3.9 \times 10^{3}$$

$$= 17 \text{ f.r.}$$

$$18 \text{ f.r.}$$

5.

B Precision Full-Wave Rectifiers

Holf-wave Rectifier and Swaming Circuit

The above circuit is a combination of half-wave rectifier with gain=2 and an inverting adder with gain=39

ouring the half-cycle

voltage at terminal 1 = + Vi

while that at terminal B is -24%.

[pidade on its off and De it on]

A4 College Book

booking The original of the surrowing circuit with Rg=Rs

$$\begin{split} \forall_{\delta} &= -\frac{R_{\delta}}{R_{\delta}} \left(v_{A} + v_{B} \right) \\ &= -\frac{R_{\delta}}{R_{\delta}} \left(v_{i} - g v_{i}^{*} \right) \\ &= -\frac{R_{\delta}}{R_{\delta}} \left(-v_{i} \right) = \frac{R_{\delta}}{R_{\delta}} v_{i}^{*} \end{split}$$

Oursing -ve half-cycle

$$V_B = 0$$
 as D_1 is on and D_2 is off. corresponding the output is,
$$V_0 = -\frac{R_0}{R_0} \left(V_B + V_B \right) = -\frac{R_0}{R_0} \left(-V_1' + 0 \right)$$

$$V_0 = +\frac{R_0}{R_0} V_1'$$
It can be seen that

So, it can be soon that are ..

Buck to book sever diodes one used to the open of the output only is surrefern. One diods is forward broad and the open diode is in several breakdown region when the output votinge is greater than (Vr+Vx). So, the output votinge count exceed ± (Vr+Vx). As larg on the output votinge is less than this limit, the circuit beloves as investing amplifier, unsigned by the diodes.

The second execut is a produpted time of the first consists where a resistor Ry is connected in scales with Rs. Using Ry He can change the limiting vollege.

suppose $R_1 \circ R_2 \circ R_2$ and $(V_2 \circ V_6) \circ qV$, with moving the contact of the right side of R_q ,

Merway - Vrange - + 44 3

with monting the contact at the left of Re.

VRO+ VRH= V2+ VE = +4V

With Ra-Ray, NRO# VR9 = ±2V

GHYRA, (VECTOR) = ±2V = VR0.

7. Inverting Schmitt trigger circuit R

The chronit boks like a non-investing amplifier except for

- (1) the input is officed to the inverting amplifier.
 (2) The feedback is connected to the numiniverting

The rolloge at the non-investing input is- $V_{R2} = \frac{V_0, R_2}{R_1 + R_2}$

works the value of the value o

 $\forall k \in -V_{01(2mk)} \ , \quad \forall k \in -V E$

Page No. 59

For example, if $V_{n+} \to 11 \text{ V}$ then and $R_0 = R_1$. Then, $V_{N,n} \circ + \text{Per} \circ + \text{Ers} \circ \text{V}$

11. V==-11 V and R2=R1 -Ham VR1 ==== -5'5V

so, with next input vollege, the do non-inventing input terrolog is the nothing to the positive solutions withage.

The original will ewitch from the positive solveration level to megalive solveration voltage when the voltage at the investing input terminal is raised above the voltage level at the non-investing input terminal is vigo.

Once the output voltage to - Vocas, then VAZ is regality. The output changes from - Vocas, to 4 Vocas, when the imput becomes hower than - VR2 volt. This is positive fredback and it causes the output to more subjectly from one saturation.

Observation

25 Vector) = 11 VOH and R1=Ro. 11-m. VR2 = +5-5-VoH.
Vector) = -11 VOH and A " VR1 = -8-5 V

The couldn't changes from one enteration level to another when the highest crosses the voltages they and - ver messe to be points one known on upper target and lower target both suspectively.

I'm this example, UTP = +5.5 mlh, tTP = -5.5 mlh.

10 Triput/ordered characteristics

Typical injuliarity or transfer characteristics of an opening investing committed transfer circuit in wherein

4) when it is maised to the UTF, the audit suddelies from + Voyads to - Voyads -> (Pant a + b)

12) It is above the UTT, the output remained - Woods.

(18) while the imput to being reduced from UTP, to the LTP, the budget remains at - Yourt - your b to d

(4) When it equals the LTP, the control registly switches from a - Versus to + Versus -> Point d to e

(6) Any further decrease of the below LTP, maintains the output vollage at 4 Vapouts -> 7 time & to f

(6) THE UTP the output voltage verrains out two could.

transfer observiteristics of investing schools to

the difference between the UTP and LTP & referred to an hystopesis. For zero crossing detector (200) have UTP and CTP equal, 20, they have 2270 hystopesis.

Assembly trigger circuit design

The current through relators R1 and R2 is first calculated as much higher than light time current.

$$\begin{array}{c} R_0 = & \frac{-Trigger\ voltage}{T_0} \\ R_1 = & \frac{V_0 - (-Trigger\ voltage)}{T_0} & \text{where} \\ \end{array}$$