CMR INSTITUTE OF TECHNOLOGY

JSN		
-----	--	--

Internal Assesment Test - II

Sub:	POWER SYSTEM OPERATION AND CONTROL Code						: 10EE8		82		
Date:	19/ 04/ 2018	Duration:	90 mins	Max Marks:	50	Sem:	8th	Bran	ich:	EEE	
Answer Any FIVE FULL Questions											
								Marks	OBE		
									Warks	CO	RBT
	Emplain the the fine star control of two area road frequency control, with the next								[10]	CO2	L2
	of block diagram and necessary equations.										
2	Explain with suitable block diagram, the mathematical modeling of AVR.								[10]	CO2	L2
3(a)	Write notes on basic generator control loops, and cross coupling between loops.								[05]	CO2	L2
(b)	(b) Determine the primary ALFC loop parameters for control area having the								[05]	CO2	L3
	following data.										
	Total rated area capacity $Pr = 2000 \text{ MW}$										
	Inertia Constant $H = 5.0 \text{ s}$										
	Frequency $f_0 = 60$ Hz										
	Normal opearating load = 1000 MW										
4(a)	(a) Draw the flow chart of contingency analysis using sensitivity factors.								[05]	CO ₅	L2
(b)	A 100MVA alternator operating on rated load, upf, at a frequency of 50Hz. The							[05]	CO2	L3	
	load is suddenly reduced to 50MW. Due to time lag in the governor system, the										
	steam valve begins to close after 0.4 sec. Determine the change in frequency that										
	occurs in this time.	$\Gamma ake H = 5 k$	W-sec/k	VA of generate	or capac	city.					
5	Explain how mathe	ematical mo	del of sp	eed governor	system	is dev	velope	ed for	[10]	CO2	L2
	Automatic Generation	on Control(A	Automatic	Load Frequen	cy Con	trol).					
6	Explain the Securit	y-Constrain	ed Optim	nal Power Flo	w (SC	OPF) f	unctio	on of	[10]	CO5	L2
	power system securi	ty with an e	xample.								
7	With the help of flow	w chart, exp	lain the c	ontingency sel	ection p	orocedu	re.		[10]	CO5	L2

*****All the Best****