CMR INSTITUTE OF TECHNOLOGY

Internal Assesment Test - III

Sub:	OPERATIONAL AMPLIFIERS AND LINEAR ICS Code							e:	15EE46		
Date:	22/05/2018	Duration:	90 mins	Max Marks:	50	Sem :	4th A	Bran	ich:	EEI	Ξ
Answer Any FIVE FULL Questions											
									Marks	OBE	
										СО	RBT
1	Design a triangular waveform generator to produce ± 2 V, 1kHz output. Use ± 15 V								10	CO5	L3
	supply and explain the operation with help of waveforms.										
OR											
1b	Explain the circuit of a full wave precision rectifier using half wave rectifier and summing circuit. Demonstrate the input and output waveforms.							ınd	10	CO3	L2
1	Design a Inverting Schmitt trigger to have UTP=+2V and LTP=-3V using uA741								10	CO4	L3
	Op-amp with supply voltage Vcc=±15V.										
	OR										
2b	Explain the working of a 4 bit R-2R ladder type DAC. An 8 bit DAC has resolution							lution	10	CO2	L3
	of $20\text{mV/LSB.Find V}_{oFS}$ and V_o if the input is $(10000000)_2$.										
	Demonstrate the working of a non inverting comparator with positive and							10	CO4	L2	
1	negative reference voltage and voltage to current converter with floating load.										
OR											
1	Explain the working of successive approximation ADC and dual slope ADC with						with	10	CO2	L2	
	block diagram										
1	Explain the operation of PLL with help of block diagram. Explain each block in							10	CO6	L2	
	detail.						10	00.6	T 0		
	Sketch the internal circuit diagram of 555 monostable multivibrator .Draw the							10	CO6	L2	
	equired waveforms a		-								
	Design a astable multivibrator using 555 timer for a frequency of 1kHz and duty							10	CO6	L3	
	cycle of 70%.Use C=0.1uF.Discuss any two applications of IC555.										

1a.

The above circuit is a combination of half-wave rectifier with gain = 30

the above circuit is a combination of half-wave rectifier with gain = 20

ouring the half-cycle

voltage at terminal A = +Vi while that at terminal B is -2Vi. I pidede D1 is off and D2 is on]

A4 College Book

During the origin of the summing circuit, with Rq=Rs

$$V_0 = -\frac{R_6}{R_4} \left(V_P + V_B \right)$$

$$= -\frac{R_6}{R_4} \left(V_1^2 - 2V_1^2 \right)$$

$$= -\frac{R_6}{R_4} \left(-V_1^2 \right) = \frac{R_6}{R_4} V_1^2$$

Ouring -ve half-cycle

VB=0 as DI is on and D2 is off.

consequently the output is,

$$V_0 = -\frac{R_6}{R_4} \left(V_P + V_B \right) = -\frac{R_6}{R_4} \left(-V_i + 0 \right)$$

$$V_0 = +\frac{R_6}{R_4} V_i$$

2a.

$$\begin{array}{c} VTP = +2 \\ LTP = -3 \end{array}$$

$$R_{1} = \underbrace{UTP}_{T_{1}} = \frac{+2}{570\mu k} = 4kn(3.9kn) \qquad \begin{array}{c} V_{1} & V_{1} & V_{2} & V_{3} \\ \hline T_{1} & 570\mu k & \end{array}$$

$$UTP = \underbrace{V_{0} \times R_{1}(V_{0} - V_{0})R_{1}}_{R_{1} + R_{2}} \Rightarrow R_{2} = \underbrace{22kn}_{R_{1} + R_{2}}$$

$$LTP = \underbrace{(V_{0} - V_{0}) \times R_{1}}_{R_{1} + R_{3}} \Rightarrow R_{3} = 15kn \end{array}$$

R-2R Ladder DAC

Fig- R-2R Ladder type DAC

The range for R is 2.5 KD to 10 KD.

For simplicity, consider a 3-bit DAC. where the didads. corresponds to the binary word input to the DAC.

-VR is the reference voltage.

The feedback resistance is 2R. The network consist of R-2R network connected with the op-amp.

3b

Functional diagram of the suncestre affortimation ADC.

The conversion sequence for a typical analog input is shown below.

correct digital	succesive affroximation resistor output VI at different stages in conversion	comparator
	10000000	1
17010100	11000000	1
	11100000	0
	11010000	1 - 1
	11011000	0
	00101011	1
	11010110	0
	11010101	0
	11010100	

Phase-locked loop (PLL)

Phase-locked loop is an important building block of linear systems PLLs are available are inexpensive monolithic IC. NE565 is the IC for PLL.

M Booic principles

The bonic block schematic of the PLL is shown. The feedbar system consists of

- ii) Phase detector/comparator.
- (ii) A low pass filter.
- will An ever amplifier
- in A rottage controlled oscillator.

6.
$$\frac{801 \text{ without}}{\text{f}} = \frac{1.45}{(R_A + 2R_B)C} = 1\times10^3$$

or, $(R_A + 2R_B) \times 0.1 \times 10^{-6} = \frac{1.45}{1\times10^3}$

or, $R_A + 2R_B = 14.5 \times 10^3 = 14.5 \times 10^3 = 14.5 \times 10^3$
 $D = \frac{R_A + R_B}{R_A + 2R_B} = 0.6$

or, $R_A + R_B = 0.6 \times 14.5 \times 10^3 = 0.6 \times 14.5 \times 10^3$

or, $R_A + R_B = 0.6 \times 14.5 \times 10^3 = 0.6 \times 14.5 \times 10^3$
 $= \frac{8.7 \times 10^3}{1\times 10^3} \times 10^3 = 1.45 \times 10^3 \times 10^3 = 1.45 \times 10^3 \times$

