USN					

Internal Assessment Test 3

Sub:	Transmission a	nd Distributio	on			Sub Code:	15EE43	Branch	EEE		
Date:	21/05/18	Duration:	90 min's	Max Marks:	50	Sem/Sec:	4	4A		OF	BE
		<u>A</u>	nswer any FI	VE FULL Questi	ons			M	ARKS	СО	RBT
1	Explain radial, pa	arallel and loc	p feeders for	AC distribution s	systen	1.			[10]	CO3	L4
2	A single phase rit 15 A at 0.6 p.f. impedance of the Find the total cur results.	lagging respection	ectively; both s AB, BC and	expressed with a l CA are (1 + j 1)	refere), (1+	nce to the vo $j2$) and $(1 + j3)$	ltage at A. The 3) ohms respect	total ively.	[10]	CO3	L3
3	A 3-phase, 4-wir 70, 84 and 33 am 3-phase motor is total current in ea motor.	nperes in each now started,	of the three taking 200 A	lines, what shoul from the lines at	d be t a p.f.	the current in of 0.2 lagging	the neutral wire g, what should b	? If a pe the	[10]	CO3	L3
4 (a)	Non-reactive load and blue phases r current in each lin	espectively one and (ii) the	f a 3-phase, 4 current in the	-wire system. The e neutral wire.	e line	voltage is 400	OV. Calculate (i)		[07]	CO3	L3
(b)	Explain 3-phase				AC di	stribution syst	em.		[03]	CO3	L4

USN					

Internal Assessment Test 3

Sub:	Transmission a	ransmission and Distribution Sub Code: 15EE43				Bran	nch:	EEE				
Date:	21/05/18	Duration:	90 min's	Max Marks:	50	Sem/Sec:	4A				OE	BE
		<u>A</u>	nswer any FI	VE FULL Questi	ons				MA	RKS	CO	RBT
1	Explain radial, pa	arallel and loc	p feeders for	AC distribution s	systen	1.			[]	[0]	CO3	L4
2	A single phase ri and 15 A at 0.6 total impedance respectively. Find to obtain the resu	p.f. lagging of the three d the total cur	respectively; sections AB,	both expressed v BC and CA are	vith re (1 +	eference to th j 1), (1+ j2)	e voltage at A. and $(1 + j3)$ c	The	[1	10]	CO3	L3
3						e? If a be the	[1	[0]	CO3	L3		
4 (a)	Non-reactive load and blue phases recurrent in each line	espectively of	f a 3-phase, 4	-wire system. Th					[()7]	CO3	L3
4 (b)	Explain 3-phase	4 wire star co	nnected unbal	lanced loads for A	AC di	stribution syst	em.		[(03]	CO3	L4

5	Derive an expression for the inductance per phase for a 3-phase overhead transmission line when conductors are unsymmetrically placed but the line is completely transposed.	[10]	CO5	L4
6	Derive an expression for the capacitance of a single phase overhead transmission line.	[10]	CO5	L4
7	Deduce an expression for line to neutral capacitance for a 3-phase overhead transmission line when the conductors are (i) symmetrically placed (ii) unsymmetrically placed but transposed.	[10]	CO5	L4
8 (a)	Two conductors of a single phase line, each of 1 cm diameter, are arranged in a vertical plane with one conductor mounted 1 m above the other. A second identical line is mounted at the same height as the first and spaced horizontally 0.25 m apart from it. The two upper and the two lower conductors are connected in parallel. Determine the inductance per km of the resulting double circuit line.	[05]	CO5	L3
8 (b)	A 3-phase overhead transmission line has its conductors arranged at the corners of an equilateral triangle of 2 m side. Calculate the capacitance of each line conductor per km. Given that diameter of each conductor is 1.25 cm.	[05]	CO5	L3

5	Derive an expression for the inductance per phase for a 3-phase overhead transmission line when conductors are unsymmetrically placed but the line is completely transposed.	[10]	CO5	L4
6	Derive an expression for the capacitance of a single phase overhead transmission line.	[10]	CO5	L4
7	Deduce an expression for line to neutral capacitance for a 3-phase overhead transmission line when the conductors are (i) symmetrically placed (ii) unsymmetrically placed but transposed.	[10]	CO5	L4
8 (a)	Two conductors of a single phase line, each of 1 cm diameter, are arranged in a vertical plane with one conductor mounted 1 m above the other. A second identical line is mounted at the same height as the first and spaced horizontally 0.25 m apart from it. The two upper and the two lower conductors are connected in parallel. Determine the inductance per km of the resulting double circuit line.	[05]	CO5	L3
8 (b)	A 3-phase overhead transmission line has its conductors arranged at the corners of an equilateral triangle of 2 m side. Calculate the capacitance of each line conductor per km. Given that diameter of each conductor is 1.25 cm.	[05]	CO5	L3