1. Explain different sources of reactive power generation and absorption of reactive power in a power system.

* TRANSMISSION LINES:

- 1. The loading conclition in which the vars absorbed are cand to VARS generated by the line is called the sunge myedance loading (SIL), and it is where the voltage throughout the length of the Ime is same.
- 2. Normally the loading is greater than site and therefore, the condition (II'X, > IVI'X exists and the net effect of the line will be to absorb (sink) the reactive power (VARs)
- 3. Under light load conditions the effect of shunt capacitors is predominating and the line will work as varks generator (source).

 $-|x|^2x_L<|v|^2x_C$ [VOLTAGE RISE] $-L1^2x_1 > |v|^2x_c$ [VOLTAGE SAG]

> \rightarrow Distance

The reactive power absorbed by the transcriptomer,
\n
$$
31^{2}x = 3kv\overline{4} \cdot \frac{\sqrt{3}x_{T}kv^{2}\cdot1000}{kv4}
$$
\n
$$
31^{2}x = \sqrt{3}kv\overline{4} \cdot \frac{\sqrt{3}x_{T}kv^{2}\cdot1000}{kv4}
$$
\nTransformer alters about reader.

* SYNCHRONOUS MACHINES!

It is know that the power transmitted from a generator bus to an infinite bus-bar is given by,

 $P = \frac{|E||V|}{|V|}$ sms $Q = \frac{|V||E|}{|V|}$ coss - $\frac{|V|^2}{|V|}$

Smilarly when IE/coss < W, 220 and the machine consumes beactive bower. Consequently an under-excited machine acts as a shout coil.

* SHUNT CAPACITORS AND REACTORS!

- 1. Shunt capacitors are used across an inductive load, to supply Rut of the reactive power Crashes required by the load. Thereby the voltage across the load is maintemed within Centam desmeible Imits.
- 2. The shunt reactors are used across capacitive loads or lightly loaded lines to absorb some of the leadings vaps again to control the voltage across the load to within Centan desivable Imits.

2. Explain with suitable block diagram, the mathematical modeling of AVR.

OBJECTIVES:-

* To montan the static accuracy of the terminal voltage. * For better transrent response.

AMPLIFIER MODEL:-

Let the transfer function of Amplifier;

$$
G_{A}(s) = \frac{k_{A}}{1+ST_{A}} = \frac{\Delta V_{R}(s)}{\Delta e(s)}
$$

$$
k_{A} = Gain \t{at} \t{Amplitude}
$$

$$
\therefore \Delta V_k(s) = G_{\mathsf{A}}(s) \cdot \Delta C(s)
$$

EXCITER MODELING: -

Define
$$
ke = Exater
$$
 Fred Resistance (14)

Le = Exciter field Inducture (H)

$$
\therefore \Delta V_{\mathbf{R}} = \mathbf{R}_{\mathbf{C}} \cdot \Delta \mathbf{I}_{\mathbf{C}} + \mathbf{L}_{\mathbf{C}} \underline{d}_{\mathbf{C}} (\Delta \mathbf{I}_{\mathbf{C}})
$$

G)

Taking Laplace Transform; $\Delta V_R(S) = Re \cdot \Delta Ie(S) + S L_e \Delta Ie(S)$ $\Delta T_e(s) = \Delta V_e(s) / [R_e + S L_e]$

From Gbove AVR loop it is clear that;

$$
\Delta V_f \propto \Delta I_e
$$

\n
$$
\Delta V_f(S) = k_1 \Delta I_e(S)
$$

\n
$$
\Delta V_f(S) = k_1 \left[\frac{\Delta V_e(S)}{k_e + S L_e} \right]
$$

$$
\frac{\Delta V_{f}(s)}{\Delta V_{R}(s)} = \frac{k_{1}/k_{e}}{1+s(\frac{L_{e}}{k_{e}})} = \frac{k_{e}}{1+s_{e}} = G_{e}(s)
$$

Where, Ke = Gram constant of Exciten

Te = Time constant of Exciter.

He need to close the above loop, if the voltage

drop across armature winding is neglected we can write; $\begin{picture}(160,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ Included EMF/of in Granacture

GENERATOR FIELD MODELING:-

Define Rf = Generator field resistance (-1) Lff = Generator freld moluctance (H) Lat = Mutual moluctance between rotor and Statur frelds.

$$
\therefore \Delta V_{f} = R_{f} \Delta i_{f} + L_{f} \underline{d}_{f} (\Delta i_{f})
$$

Taking Laplace Transform; $\Delta V_f(s) = (k_f + s L_{ff}) \Delta I_f(s)$ $\Delta I_f(S) = \frac{\Delta V_f(G)}{(k_f + s_{hf})}$ Alt (s) = AW(s) = $\frac{L_{0} + 1}{\sqrt{2}}$ At (s) $\frac{L_{0} + 1}{\sqrt{2}}$ At (s) $\frac{L_{0} + 1}{\sqrt{2}}$ At (s) $\frac{L_{0} + 1}{\sqrt{2}}$ and $\frac{L_{0} +$

Open loop transfer turction:

 $G_{0}(s) = G_{A}(s) - G_{C}(s) - G_{C}(s) = \frac{k_{A} \cdot k_{c} \cdot k_{f}}{(1 + sT_{A})(1 + sT_{c})(1 + sT_{ds})}$

Let
$$
k = k_A \cdot k_B \cdot k_F
$$

 $G_0(S) = \frac{k}{C(1+ST_a)(C+ST_c)(1+ST_a)})$

Closed loop transfer function:

3(a). Write notes on basic generator control loops, and cross coupling between loops.

SCHEMATIC DIAGRAM OF LOAD FREQUENCY AND EXCITATION

VOLTAGE REGULATOR OF A TURBO-GENERATOR

The two control loops are:

- Control of turbine imput also called as:

-> Load Frequency Control (LFC)

-> Automatic Generation Control (AGC)

-> Automatic Load Frequency Control (ALFC)

-> MW-f control loop

-> Power - Frequency control loop

Divyateja Raju-CMRIT

- Excitation control (or) MUAR-Voltage (a-v) Control CROSS-COUPLING BETWEEN CONTROL LOOPS:

- * Active power change is dependent on internal machine angle 's' and is molependent of bus voltage. Change m angle 's' is caused by momentary change in generator Speed.
- * While be bus voltage is dependent on machine excitation and thenfore on reactive power generation is and is independent of machine angle 's'
- & Theretore, load treasury and ciccitation voltage controls air non-interactive and can be modelled, analysed independently.
- * Excitation voltage control is fast acting in which the majon take constant is that of generator field.
- * Power-frequency control is slow acting with major time Constant contributed by the turbine and generator moment of mention this time constant is much larger than that of the generator field.
- * Thus the transients in excitation voltage control varish much faster and do not affect the dynamics of power frequency control. Divyateja Raju-CMRIT

3(b). Determine the primary ALFC loop parameters for control area having the following data.

Total rated area capacity Pr = 2000 MW

Inertia Constant H = 5.0 s

Frequency $f_0 = 60$ Hz

Normal opearating load = 1000 MW

Assume that the load frequency dependency is linear, meaning that the load would movease 1x for 1x. frequency change. ∂P_{D} = 1. For af 1000 = 10 Mes $df = |y|$ of 50 = $0.5H_2$. $D = \frac{\partial P_0}{\partial f} = \frac{10}{0.5}$ 2 20 MW/ $H_2 = \frac{20}{2000} = 0.01$ Py MW/ H_2 K_{P} = V_{D} = 100 Hz/pumes - Power system gam $T_{\beta} = \frac{2H}{f^{\circ}\beta} = 20$ Sec. $-$ Power system thre constant $G_{\mathfrak{p}}(s) = \frac{k_{\rho}}{1+5T_{\rho}} = \frac{100}{1+20s}$ 1 Power System Transter Functions

4(a). Derive the equations to get the relation between voltage, power and reactive power at a node.

The phase voltage V at a node is a function of
$$
P
$$
 and Q at P and Q at P and Q at P and P and Q at P and P and P are P and P are <

The voltage is also independent of adjacent nodes and
assume that these are infinite buses.
The total differentical of V,

$$
dV = (dV/sp) \cdot dp + (dV/sa) \cdot da
$$

and any using the relation

 $(dP/s_v) \cdot (dV/s_P) = 1$ and

 $(d\omega/\text{dv})$ - $(d\vee/d\omega)$ = 1

$$
dv = \frac{dp}{(dr/v)} + \frac{d\omega}{(dr/v)}
$$

From the above equation it is seen that the change in voltage at a node is defined by two aventities (dP_{dv}) and (dP_{dv}) Normally (80/sv) is the grantity of greater interest and can be experimentally determined using Network Analyser by mectong known quantity of VARS at the nocle M Question and measuring the difference in voltage produced.

4(b). Explain the three modes of failures of a system.

EARLY FAILURES :-

The mitsal region that begins at time zero when a customer finst begins to use the product is characterized by a high but rapidly mercasing failure rate. This region is known as "Early Failure Renod" (Intent Montality Renod). This decreasing failure rate typically lasts several weeks to a few months.

CHANCE PAILURES: -

Next, the failure rate levels off and remains roughly constant for the majority of the useful life of the product. This long period of a level failure rate is known as the Intrinsic (chance or Stable) failure Deriod.

Most systems spend most of them lifetimes operating m this flat portoon of the bathtub curve!

WEAR-OUT FAILURES :-

Finally it units remain in use long enough, the failure rate begns to decreese marcase as metands wear out and degradation tailwas occur at an even Morasing hate. This is the "wearout failure period."

5. Explain how mathematical model of speed governor system is developed for Automatic **Generation Control**

(Automatic Load Frequency Control).

SPEED GOVERNING SYSTEM:

Figure shows the schematic diagram of a speed governing system which controls the real power flow in the power system. The speed governing system consists of the following parts: 1. Speed Governor:

This is a fly-ball type of speed governor and constitutes the heart of the system as it senses the change in speed or frequency. "with increase in speed the fly-balls move outwards and the point B on linkage mechanism moves downwards and vice-versa

2. Linkage Mechanism:

ABC and CDE are the rigid links pivoted at B and D respectively. The mechanism provides a movement to the control value in the proportion to change in speed. Link 4 (l4) provides a feedback from the steam value movement.

This consiste of the main piston and pilot value. Low 3. Hydraulic Amplifier: power level pilot value movement is converted into high power level piston value movement which is necessary to open or close

4. Speed Changer:

The speed changer provides a steady state power output
setting for the turbine. The downward movement of the speed
changer opens for the upper pilot value so that more steam is admitted to the turbine under steady condition. The reverse happens when speed changer moves upward.

MODEL OF SPEED GOVERNING SYSTEM: We consider the steady state condition by assuming that
the linkage mechanism is stationary, pilot valve closed, steam value opened by a definite magnitude, the turbine output balances the generator output and the turbine or generator is running at a particular speed
Two factors contribute to the movement of C a) Increase in frequency causes B to move by Δx_{B} , downward
b) The lowering of speed changer by an amoutit Δx_{A} . lifts the point C upwards .. Movement or change at C, $\Delta x_c = \kappa_1 \Delta f - \kappa_2 \Delta P_c$ - 1

SPEED CHANGER 'RAISE' CASE

 $\sqrt{ }$ Δx_A $+$ Vel A Δx_B $\overline{}$ \circ B \mathcal{A} $-ve$ Δx_c \mathcal{C} 1 Δx_{p} $-ve \in$ \mathcal{D} Δx_E \downarrow E $+v$

TURBINE @ HIGHER SPEED(W91) TURBINE @ LOWER SPEEP(W4)

The movement of D is contributed by the movement of C and t Therefore, \therefore $\Delta x_p = k_3 \Delta x_c + k_4 \Delta x_E$ - 2. Assuming that oil flow into hydraulic cylinder is
proportional to position Δx_D of the pilot value, then
 $\Delta x_E = K_E \int \Delta x_D \cdot d\tau$ (3).

where K, K2, K3, K4 depend upon the length of linkage arms and K5 depends upon the fluid pressure and the geometry of the cylinder.

SPEED CHANGER 'LOWER' CASE. (3)

Laplace transform of eq(D, eq(E), eqE) term
\n
$$
\Delta x_c(S) = K_1 \Delta F(S) - K_2 \Delta P_c(S) \longrightarrow (E)
$$

\n $\Delta x_c(S) = K_3 \Delta x_c(S) + K_4 \Delta x_c(S) \longrightarrow (E)$
\n $\Delta x_c(S) = -\frac{K_5}{S} \cdot \Delta x_c(S)$
\nDivatria Raiu-t
\n $S \cdot \Delta x_c(S) = -K_5 \cdot \Delta x_c(S) \longrightarrow (E)$
\n(i) $\overline{S} \longrightarrow$
\n $\Delta x_c(S) = K_3 K_1 \Delta F(S) - K_3 K_2 \Delta P_c(S) + K_4 \Delta x_c(S) \longrightarrow (E)$
\n(j) $\overline{S} \cdot \Delta x_c(S) = -K_3 K_1 K_5 \Delta F(S) + K_3 K_2 K_5 \Delta P_c(S) - K_4 K_5 \Delta F_c(S) \longrightarrow (E \times E) \times (E \times$

6. Briefly explain the two state generator model.With usual notations derive the expression for availabilty and unavailability interms of failure and repair rate.

The basic elements used to evaluate generation adequacy are shown in tigure below. The system is assumed to operate successfully as long as there is subticient generation capacity to supply the load. First, mathematical representations of generation and load are combined to model the risk of supply shortages in the system Secondly, Anobablistic astimates of shortage risk are used as Motres of bulk hower reliability for the considered configuration.

The status of a generating cent is conveniently described as residing m one of several passible states listed below.

Forced Outage - An outage that results when trom emergency conditions, requiring that the component be taken out of senice, muncdiatedy. Scheduled Outage - An outage that results when a comprant is deliberately taken and of service, usually for purpose. of

preventive mantevance (or) repair.

Where I and M are the unst failure and bepam hate respectively. The most important quantity for generation reliability analysis is the probability of unit failure.

$$
\therefore UNAVAILABILITY (U) = \frac{\sum (DQUN TIME)}{\sum (DQUN TIME) + \sum (UPTIME)}
$$

Since U = \frac{MTTR}{MTTR + MTTR}

But
$$
MTTR = 1/\mu
$$
 and $MTTR = \frac{1}{\lambda}$
\n $U = \frac{1/\mu}{(\mu + (\mu))}$
\n $U = \frac{\lambda}{\lambda + \mu}$
\n $U = \frac{\lambda}{\lambda + \mu}$
\n \Rightarrow E_{X pressure
\nby

But
$$
MTR = Y_N
$$
 and $MTTP = Y$

$$
A = \frac{(\frac{1}{2})}{(\frac{1}{2})+(1/4)}
$$

$$
A = \frac{14}{\frac{1}{2}+14}
$$

$$
\Rightarrow
$$
 Expressing the arcchild

7. Show that the real power flow between two nodes is determined by the transmission angle δ and the reactive power flow is determined by the scalar voltage difference between two nodes.

$$
V_{12} = |V_{1}| \leq \frac{1}{2} = \frac{V_{2} - V_{2}}{2} = \frac{(|V_{1}| \leq -1/2 \leq |C| - 1/2 \le
$$

Complex power
$$
S = V_2 T^* = (V_2 | Ie) \left[\frac{V_1 I e^{-S}}{I2I} - \frac{V_2 I}{I2I} Ie \right]
$$

$$
S = \frac{|V_1| I_1 I e^{-S}}{I2I} - \frac{V_2 I^2}{I2I} Ie^{-S}
$$

$$
S = \left[\frac{|v_1||v_1|}{|2|}cos(\theta-s) + i\frac{|v_1||v_1|}{|2|}sin(\theta-s)\right] - \left[\frac{|v_1|^2}{|2|}cos(t) + i\frac{|v_1|}{|2|}sin(\theta)\right]
$$

$$
S = |0 + i\theta
$$

$$
S = |0 + i\theta|
$$

$$
For transmussum Im; RLLXL , tan2(xL) > 0.2902
$$

$$
\therefore P = \frac{|y_1|v_2|}{14} \cdot \frac{v_1}{14}
$$

$$
\omega = \frac{|w_1|v_2}{|w_1|} = \frac{|v_1||v_2|}{12}
$$

In thus Reactive power (a) flow between two nodes is detunned by scalan voltage différence between
two node. I leal power flows between two nodes is determined by pransmission angle (s).

8.Obtain the expressions for steady-state reliability and general reliability expression.

It three it, the relationship R(t) is given by,

\n
$$
R(t) = \frac{N_s(t)}{N_o} = \frac{N_o - N_f(t)}{N_o} = 1 - \frac{N_f(t)}{N_o}
$$
\nThus, $\frac{dR(t)}{dt} = \frac{-1}{N_o} \frac{dN_f(t)}{dt}$, $As \, dt \rightarrow 0$

\n
$$
\rightarrow 0
$$

$$
\frac{1}{N_0} \cdot \frac{dN_f(t)}{dt}
$$
 is the instantaneous failure density function
which is expressed by f(t), and

$$
\frac{f(t) = \frac{dR(t)}{dt} - (2)}{dt}
$$

The hazard (tailure) rate, $\lambda(t)$ is defined as the rencentage of those remaining compract that will fail in the hert mitened of the is given by

$$
\lambda(t) = \frac{d}{dt} N_f(t) / N_s(t)
$$

$$
\lambda(t) = \frac{N_o}{N_e} \cdot \frac{1}{N_s(t)} \cdot \frac{dN_g(t)}{dt} = \frac{f(t)}{f(t)}
$$

But from ②;
$$
f(t) = \frac{dRCt}{dt}
$$
,
\n
$$
\lambda(t) = -\frac{dRCt}{dt \cdot RCt} - \frac{Q}{d}
$$

$$
From (2) = dRCt = f Gt - dt.
$$
\n
$$
\int -dRCt = \int f(t) - dt
$$
\n
$$
I - RCt = \int f(t) - dt
$$
\n
$$
I - RCt = \int f(t) - dt = Fc
$$
\n
$$
f + Ct = \int f(t) - dt = Fc
$$
\n
$$
F = c
$$

$$
f_{\text{nom}}(3) = \frac{dP(t)}{P(t)} = \lambda(t) \cdot dt
$$
\n
$$
= \int_{0}^{t} \frac{dP(t)}{P(t)} = \int_{0}^{t} \lambda(t) \cdot dt
$$

$$
log P(t) = -\int ACt \, dt
$$
\n
$$
P(t) = e^{-\int \frac{t}{\lambda}(t) \, dt}
$$
\n
$$
P(t) = e^{-\int \frac{t}{\lambda}(t) \, dt}
$$
\n
$$
General expression by reliability.
$$

From the above expression it is dear that teliability and hazard@r) tailure rates are the function of time.

STEADY STATE EXPRESSION FOR RELIABILITY: -

2. Relicability (Avcitalability);
\n
$$
R = A = \frac{\sum (V_{P} Im_{e})}{\sum (V_{P} Im_{e}) + \sum (Doun Im_{e})} = \frac{MTTF}{MTTF + MTTR}
$$
\n
$$
R = \frac{(V_{\lambda})}{(V_{\lambda}) + (V_{\lambda})} = \frac{W}{\lambda + W}
$$
\n
$$
R = \frac{W}{\lambda + W}
$$
\n
$$
Srtany strx = EXPtestiny Fve Intangium.
$$
\n
$$
Gve Unrelically (Unavailable) / \frac{\sum (Doun Im_{e})}{\sum (Doun Im_{e}) + \sum (V_{P} Im_{e})} = \frac{MTTR}{MTTR + MTTR}
$$
\n
$$
Q = U = \frac{(V_{\lambda})}{\sum (Doun Im_{e}) + \sum (V_{P} Im_{e})} = \frac{MTTR}{\lambda + W}
$$

 $Q = \frac{\lambda}{\lambda + \mu}$ STEADY STATE EXPRESSION FOR UNRELIABILITY.