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Abstract

This study proposes a Deep Neural Network based approach towards

identification of a language that is spoken by a user. The languages that

are being processed are English and Hindi.

Often in certain Networking Companies, it is observed that language

barrier problems arise. This can be overcome by the use of identification

of the spoken language, following which correspondence will occur with

the appropriate person.

Various concepts of deep learning and neural networking will be used

along with the main concept of Mel Frequency Cepstral Coefficients (MFCC).

In sound processing, the mel-frequency cepstrum (MFC) is a representa-

tion of the short-term power spectrum of a sound, based on a linear cosine

transform of a log power spectrum on a nonlinear mel scale of frequency.

Deep learning architectures such as deep neural networks, deep belief

networks and recurrent neural networks have been applied to fields in-

cluding computer vision, speech recognition, natural language processing,

audio recognition, social network filtering, machine translation, bioinfor-

matics and drug design, where they have produced results comparable to

and in some cases superior to human experts.
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Spoken Language Recognition with deep learning Chapter 1

1.1 Preamble

Deep learning (also known as deep structured learning or hierarchical learning) is

part of a broader family of machine learning methods based on learning data rep-

resentations, as opposed to task-specific algorithms. Learning can be supervised,

semi-supervised or unsupervised.

Deep learning architectures such as deep neural networks, deep belief networks and

recurrent neural networks have been applied to fields including computer vision, speech

recognition, natural language processing, audio recognition, social network filtering,

machine translation, bioinformatics and drug design, where they have produced results

comparable to and in some cases superior to human experts.

Deep learning models are vaguely inspired by information processing and commu-

nication patterns in biological nervous systems yet have various differences from the

structural and functional properties of biological brains, which make them incompati-

ble with neuroscience evidences. In our case of spoken language recognition, the main

aim is to identify a language that is being spoken by a user.

Various concepts of deep learning and neural networking will be used along with

the main concept of Mel Frequency Cepstral Coefficients (MFCC). In sound process-

ing, the mel-frequency cepstrum (MFC) is a representation of the short-term power

spectrum of a sound, based on a linear cosine transform of a log power spectrum on

a nonlinear mel scale of frequency.

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make

up an MFC. They are derived from a type of cepstral representation of the audio clip

(a nonlinear ”spectrum-of-a-spectrum”). The difference between the cepstrum and

the mel-frequency cepstrum is that in the MFC, the frequency bands are equally

spaced on the mel scale, which approximates the human auditory system’s response

more closely than the linearly-spaced frequency bands used in the normal cepstrum.

1.2 Purpose of the project

The purpose of this project is to design and implement a software system which will

automate the task of identifying a language that is being spoken by a user.

In telecommunication service provider companies, when a call is made by the cus-

tomer, an automatically generated voice asks the user to enter the number according

the language they want to communicate in.

This process can be avoided if, when the user speaks in any language, the call will

automatically get transferred to the service provider employee that is aware of that

language.

Dept Of CSE, CMRIT, Bengaluru - 560037 2



Spoken Language Recognition with deep learning Chapter 1

In this project, only the back-end procedure is created in order to identify two

different languages, Hindi and English. Thus, this report encapsulates a brief overview

of the product, the requirements necessary for its development, the design features

and considerations, the process of implementing it as well as its testing details.

This report has been prepared to Outline the main features of the software system

introduced and the details of the development procedure followed. Act as a basis for

any future enhancement that might be implemented with respect to this project.

1.3 Scope of the project

In telecommunication service provider companies, when a call is made by the customer,

an automatically generated voice asks the user to enter the number according the

language they want to communicate in.

This process can be avoided if, when the user speaks in any language, the call will

automatically get transferred to the service provider employee that is aware of that

language.

There a considerate amount of time waste and energy that could be avoided by

the use of this process.

1.4 Definitions, acronyms and abbreviations

MFC: is a representation of the short-term power spectrum of a sound, based on a

linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency.

MFCC: Mel Frequency Cepstral Coefficients are coefficients that collectively make

up an MFC.

WAV: Waveform Audio File Format is a Microsoft and IBM audio file format

standard for storing an audio bitstream on PCs.

CSV: Comma Separated Values ( excel sheet format )

Dept Of CSE, CMRIT, Bengaluru - 560037 3
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Spoken Language Recognition with deep learning Chapter 2

Literature survey is the documentation of a comprehensive review of the published

and unpublished work from secondary sources data in the areas of specifc interest to

the researcher. The library is a rich storage base for secondary data and researchers

used to spend several weeks and sometimes months going through books, journals,

newspapers, magazines, conference proceedings, doctoral dissertations, master’s the-

ses, government publications and financial reports to understand information on their

research topic. Reviewing the literature on the topic area at this time helps the re-

searcher to focus further interviews more meaningfully on certain aspects found to be

important is the published studies even if these had not surfaced during the earlier

questioning .So the literature survey is important for gathering the secondary data

for the research which might be proved very helpful in the research. The literature

survey can be conducted for several reasons. The literature review can be in any area

of the business.

2.1 Tensorflow

2.1.1 Determine which tensorflow to install

• TensorFlow with CPU support only. If the system does not have a NVIDIA

GPU, install this version. Note that this version of TensorFlow is typically

much easier to install (typically, in 5 or 10 minutes), so even if you have an

NVIDIA GPU, installing this version first is recommended. Prebuilt binaries

will use AVX instructions.

• TensorFlow with GPU support. TensorFlow programs typically run significantly

faster on a GPU than on a CPU. Therefore, if your system has a NVIDIA GPU

meeting the prerequisites shown below and you need to run performance-critical

applications, you should ultimately install this version.

2.2 PyCharm

• Install Anaconda (Python) on your operating system. You can either download

anaconda from the official site and install on your own or you can follow these

anaconda installation tutorials below.

• Download the community edition of Pycharm for your operating system.

Dept Of CSE, CMRIT, Bengaluru - 560037 5
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Spoken Language Recognition with deep learning Chapter 3

3.1 Deep Learning

Deep learning (also known as deep structured learning or hierarchical learning) is

part of a broader family of machine learning methods based on learning data rep-

resentations, as opposed to task-specific algorithms. Learning can be supervised,

semi-supervised or unsupervised. Deep learning architectures such as deep neural

networks, deep belief networks and recurrent neural networks have been applied to

fields including computer vision, speech recognition, natural language processing, au-

dio recognition, social network filtering, machine translation, bioinformatics and drug

design,] where they have produced results comparable to and in some cases superior to

human experts. Deep learning models are vaguely inspired by information processing

and communication patterns in biological nervous systems yet have various differences

from the structural and functional properties of biological brains, which make them

incompatible with neuroscience evidences.

3.1.1 Definition

Deep learning is a class of machine learning algorithms that:[10](pp199200)

• use a cascade of multiple layers of nonlinear processing units for feature ex-

traction and transformation. Each successive layer uses the output from the

previous layer as input.

• learn in supervised (e.g., classification) and/or unsupervised (e.g., pattern anal-

ysis) manners.

• learn multiple levels of representations that correspond to different levels of

abstraction; the levels form a hierarchy of concepts.

3.1.2 Types

3.1.2.1 Supervised Learning

Supervised learning is the machine learning task of learning a function that maps an

input to an output based on example input-output pairs.[1] It infers a function from

labeled training data consisting of a set of training examples.[2] In supervised learning,

each example is a pair consisting of an input object (typically a vector) and a desired

output value (also called the supervisory signal). A supervised learning algorithm

analyzes the training data and produces an inferred function, which can be used for

mapping new examples. An optimal scenario will allow for the algorithm to correctly

determine the class labels for unseen instances. This requires the learning algorithm

to generalize from the training data to unseen situations in a ”reasonable” way (see

Dept Of CSE, CMRIT, Bengaluru - 560037 7



Spoken Language Recognition with deep learning Chapter 3

inductive bias). The parallel task in human and animal psychology is often referred

to as concept learning. In order to solve a given problem of supervised learning, one

has to perform the following steps:

• Determine the type of training examples. Before doing anything else, the user

should decide what kind of data is to be used as a training set. In case of

handwriting analysis, for example, this might be a single handwritten character,

an entire handwritten word, or an entire line of handwriting.

• Gather a training set. The training set needs to be representative of the real-

world use of the function. Thus, a set of input objects is gathered and corre-

sponding outputs are also gathered, either from human experts or from mea-

surements.

• Determine the input feature representation of the learned function. The accu-

racy of the learned function depends strongly on how the input object is repre-

sented. Typically, the input object is transformed into a feature vector, which

contains a number of features that are descriptive of the object. The number

of features should not be too large, because of the curse of dimensionality; but

should contain enough information to accurately predict the output.

• Determine the structure of the learned function and corresponding learning al-

gorithm. For example, the engineer may choose to use support vector machines

or decision trees.

• Complete the design. Run the learning algorithm on the gathered training set.

Some supervised learning algorithms require the user to determine certain con-

trol parameters. These parameters may be adjusted by optimizing performance

on a subset (called a validation set) of the training set, or via cross-validation.

• Evaluate the accuracy of the learned function. After parameter adjustment and

learning, the performance of the resulting function should be measured on a test

set that is separate from the training set.

3.1.2.2 Unsupervised Learning

Unsupervised machine learning is the machine learning task of inferring a function that

describes the structure of ”unlabeled” data (i.e. data that has not been classified or

categorized). Since the examples given to the learning algorithm are unlabeled, there

is no straightforward way to evaluate the accuracy of the structure that is produced

by the algorithmone feature that distinguishes unsupervised learning from supervised

learning and reinforcement learning. A central application of unsupervised learning

Dept Of CSE, CMRIT, Bengaluru - 560037 8
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is in the field of density estimation in statistics, though unsupervised learning encom-

passes many other problems (and solutions) involving summarizing and explaining

various key features of data.

The classical example of unsupervised learning in the study of both natural and

artificial neural networks is subsumed by Donald Hebb’s principle, that is, neurons

that fire together wire together. In Hebbian learning, the connection is reinforced

irrespective of an error, but is exclusively a function of the coincidence between action

potentials between the two neurons. A similar version that modifies synaptic weights

takes into account the time between the action potentials (spike-timing-dependent

plasticity or STDP). Hebbian Learning has been hypothesized to underlie a range of

cognitive functions, such as pattern recognition and experiential learning.

3.2 Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An

MLP consists of at least three layers of nodes. Except for the input nodes, each node

is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learn-

ing technique called backpropagation for training. Its multiple layers and non-linear

activation distinguish MLP from a linear perceptron. It can distinguish data that is

not linearly separable. Multilayer perceptrons are sometimes colloquially referred to

as ”vanilla” neural networks, especially when they have a single hidden layer. Acti-

Figure 3.1: Multilayer Perceptron

vation function

Dept Of CSE, CMRIT, Bengaluru - 560037 9



Spoken Language Recognition with deep learning Chapter 3

If a multilayer perceptron has a linear activation function in all neurons, that is, a

linear function that maps the weighted inputs to the output of each neuron, then

linear algebra shows that any number of layers can be reduced to a two-layer input-

output model. In MLPs some neurons use a nonlinear activation function that was

developed to model the frequency of action potentials, or firing, of biological neurons.

The two common activation functions are both sigmoids, and are described by y(vi)

= tanh(vi) and y(vi)=(1+e to the power vi)power -1 The first is a hyperbolic tangent

that ranges from -1 to 1, while the other is the logistic function, which is similar in

shape but ranges from 0 to 1. Here yi is the output of the ith node (neuron) and vi is

the weighted sum of the input connections. Alternative activation functions have been

proposed, including the rectifier and softplus functions. More specialized activation

functions include radial basis functions (used in radial basis networks, another class

of supervised neural network models).

Layers

The MLP consists of three or more layers (an input and an output layer with one or

more hidden layers) of nonlinearly-activating nodes making it a deep neural network.

Since MLPs are fully connected, each node in one layer connects with a certain weight

wij to every node in the following layer.

Learning

Learning occurs in the perceptron by changing connection weights after each piece

of data is processed, based on the amount of error in the output compared to the

expected result. This is an example of supervised learning, and is carried out through

backpropagation, a generalization of the least mean squares algorithm in the linear

perceptron.

Modes

• Training Mode

Data is provided to the network and the neurons goes through it, learning and

classifying automatically.

• Testing Mode In this mode, an input is provided on which the neuron has been

trained on. It will detect the input and provide the output.

3.3 Convolutional Neural Network

In machine learning, a convolutional neural network (CNN, or ConvNet) is a class

of deep, feed-forward artificial neural networks, most commonly applied to analyzing

visual imagery.

Dept Of CSE, CMRIT, Bengaluru - 560037 10
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CNNs use a variation of multilayer perceptrons designed to require minimal prepro-

cessing. They are also known as shift invariant or space invariant artificial neural

networks (SIANN), based on their shared-weights architecture and translation invari-

ance characteristics.

Convolutional networks were inspired by biological processes in that the connectivity

pattern between neurons resembles the organization of the animal visual cortex. In-

dividual cortical neurons respond to stimuli only in a restricted region of the visual

field known as the receptive field. The receptive fields of different neurons partially

overlap such that they cover the entire visual field.

CNNs use relatively little pre-processing compared to other image classification algo-

rithms. This means that the network learns the filters that in traditional algorithms

were hand-engineered. This independence from prior knowledge and human effort

in feature design is a major advantage. They have applications in image and video

recognition, recommender systems and natural language processing.

Design

A CNN consists of an input and an output layer, as well as multiple hidden layers.

The hidden layers of a CNN typically consist of convolutional layers, pooling layers,

fully connected layers and normalization layers[citation needed]. Description of the

process as a convolution in neural networks is by convention. Mathematically it is a

cross-correlation rather than a convolution. This only has significance for the indices

in the matrix, and thus which weights are placed at which index.

Convolutional Convolutional layers apply a convolution operation to the input, pass-

ing the result to the next layer. The convolution emulates the response of an individual

neuron to visual stimuli. Each convolutional neuron processes data only for its recep-

tive field. Although fully connected feedforward neural networks can be used to learn

features as well as classify data, it is not practical to apply this architecture to images.

A very high number of neurons would be necessary, even in a shallow (opposite of

deep) architecture, due to the very large input sizes associated with images, where

each pixel is a relevant variable. For instance, a fully connected layer for a (small)

image of size 100 x 100 has 10000 weights for each neuron in the second layer. The

convolution operation brings a solution to this problem as it reduces the number of

free parameters, allowing the network to be deeper with fewer parameters. For in-

stance, regardless of image size, tiling regions of size 5 x 5, each with the same shared

weights, requires only 25 learnable parameters. In this way, it resolves the vanishing or

exploding gradients problem in training traditional multi-layer neural networks with

many layers by using backpropagation.

Pooling Convolutional networks may include local or global pooling layers, which

combine the outputs of neuron clusters at one layer into a single neuron in the next

layer. For example, max pooling uses the maximum value from each of a cluster of

Dept Of CSE, CMRIT, Bengaluru - 560037 11
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neurons at the prior layer. Another example is average pooling, which uses the aver-

age value from each of a cluster of neurons at the prior layer.

Fully connected Fully connected layers connect every neuron in one layer to every

neuron in another layer. It is in principle the same as the traditional multi-layer per-

ceptron neural network (MLP).

Weights CNNs share weights in convolutional layers, which means that the same

filter (weights bank) is used for each receptive field in the layer; this reduces memory

footprint and improves performance.

3.4 Mel Spectral Frequency Cepstral Coefficient

In order to identify which language is being spoken, the system must be able to dif-

ferentiate between them. This can be done using MFCC ( Mel Frequency Cepstral

Coefficient ) extraction. It is a feature extraction technique. In sound processing,

Figure 3.2: Mel Frequency Cepstral Coefficient

the mel-frequency cepstrum (MFC) is a representation of the short-term power spec-

trum of a sound, based on a linear cosine transform of a log power spectrum on a

nonlinear mel scale of frequency. Mel-frequency cepstral coefficients (MFCCs) are co-

efficients that collectively make up an MFC. They are derived from a type of cepstral

representation of the audio clip (a nonlinear ”spectrum-of-a-spectrum”). The differ-

ence between the cepstrum and the mel-frequency cepstrum is that in the MFC, the

frequency bands are equally spaced on the mel scale, which approximates the human

auditory system’s response more closely than the linearly-spaced frequency bands used

in the normal cepstrum. This frequency warping can allow for better representation

of sound, for example, in audio compression.
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MFCCs are commonly derived as follows:

• Take the Fourier transform of (a windowed excerpt of) a signal.

• Map the powers of the spectrum obtained above onto the mel scale, using tri-

angular overlapping windows.

• Take the logs of the powers at each of the mel frequencies.

• Take the discrete cosine transform of the list of mel log powers, as if it were a

signal.

• The MFCCs are the amplitudes of the resulting spectrum.

There can be variations on this process, for example: differences in the shape

or spacing of the windows used to map the scale, or addition of dynamics features

such as ”delta” and ”delta-delta” (first- and second-order frame-to-frame difference)

coefficients.

The European Telecommunications Standards Institute in the early 2000s defined a

standardised MFCC algorithm to be used in mobile phones.

3.5 Tensorflow

TensorFlow is an open-source software library for dataflow programming across a

range of tasks. It is a symbolic math library, and is also used for machine learning

applications such as neural networks. It is used for both research and production at

Google, often replacing its closed-source predecessor, DistBelief.

TensorFlow was developed by the Google Brain team for internal Google use. It was

released under the Apache 2.0 open source license on November 9, 2015.
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The Software Requirements Specifications (SRS) that follows describes the be-

haviour expected from the system to be developed. It includes a set of functional and

non-functional requirements and the operating environment (hardware requirements

and software requirements) to be used. It also explains the characteristics of the in-

tended user along with valid reasons for building the proposed system by enlisting

its applications and advantages. The purpose of this section is to specify the various

requirements for the successful running of this project.

4.1 Operating Environment

4.1.1 Hardware requirements

Processor: Intel Pentium 4/ AMD 64 and above

RAM: A size of at least 512 MB

Hard Disk: Space of a least 1 GB

4.1.1.1 Software requirements

Operating System Platform: Windows XP/ Windows 7/ Windows 10

IDE: PyCharm/Jupyter Notebook

Framework: Tensorflow

Language: Python

sub section content goes here

4.2 Functional requirements

They state the services provided by the system, behaviour of the system and reaction

of the system to particular inputs. It may also specify what the system should not

do.

• Audio is taken as an input.

• Features from audio recordings are extracted.

• Features are stored in an excel sheet and inputted into code in a CSV format.

• The system is trained on the features that have been extracted so that identifi-

cation of the language is possible.

• Code implements the classification of audio signals into Hindi and English.

• For checking if the system has been trained correctly, a testing code is imple-

mented.
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• Last step is validation of the output.

4.3 Non-functional Requirements

They are requirements which impose constraints on the design, implementation ( such

as performance engineering requirements, quality standards or design constraints ) and

services or functions offered by the system. They apply to the system as a whole.

• Platform Independence: The software should run on any hardware or software

platform ( PC, Mac, SunSparc, etc.) or software platform (Linux, Unix, MacOS,

Windows etc.)

• Accuracy: The audio recordings must be classified into their true classes. There

should be minimum misclassification error.

• Efficiency: Software should not waste system resources such as memory and

processor cycles.

• Reliability: Probability of failure-free software operation for a specific period of

time in a specified environment should be high.

• Speed: Classification speed must be as fast as neural networking system can

attain.

• Friendly user interface

4.4 User characteristics

The users of this application would be:

• People who know only a certain language can use it to translate an unknown

language into a known language.

• Natural Language Processing users and developers

4.5 Applications of the system

Applications of deep learning are:

Automatic speech recognition Large-scale automatic speech recognition is the first

and most convincing successful case of deep learning. LSTM RNNs can learn ”Very

Deep Learning” tasks that involve multi-second intervals containing speech events sep-

arated by thousands of discrete time steps, where one time step corresponds to about
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10 ms. LSTM with forget gates is competitive with traditional speech recognizers on

certain tasks.

Image recognition A common evaluation set for image classification is the MNIST

database data set. MNIST is composed of handwritten digits and includes 60,000

training examples and 10,000 test examples. As with TIMIT, its small size lets users

test multiple configurations.

Visual art processing Closely related to the progress that has been made in image

recognition is the increasing application of deep learning techniques to various visual

art tasks. DNNs have proven themselves capable, for example, of a) identifying the

style period of a given painting, b) ”capturing” the style of a given painting and

applying it in a visually pleasing manner to an arbitrary photograph, and c) generating

striking imagery based on random visual input fields.

Natural language processinG Neural networks have been used for implementing

language models since the early 2000s. LSTM helped to improve machine translation

and language modeling.
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Design is a meaningful engineering representation of something that is to be built.

It is the most crucial phase in the developments of a system. Software design

is a process through which the requirements are translated into a representation of

software. Design is a place where design is fostered in software Engineering. Based on

the user requirements and the detailed analysis of the existing system, the new system

must be designed. This is the phase of system designing. Design is the perfect way to

accurately translate a customers requirement in the finished software product. Design

creates a representation or model, provides details about software data structure,

architecture, interfaces and components that are necessary to implement a system.

The logical system design arrived at as a result of systems analysis is converted

into physical system design.

5.1 System Development Methodology

System development method is a process through which a product will get completed

or a product gets rid from any problem. Software development process is described as

a number of phases, procedures and steps that gives the complete software. It follows

series of steps which is used for product progress. The development method followed

in this project is waterfall model.

5.1.1 Model Phases

The waterfall model is a sequential software development process, in which progress is

seen as owing steadily downwards (like a waterfall) through the phases of Requirement

initiation, Analysis, Design, Implementation, Testing and maintenance.

Requirement Analysis: This phase is concerned about collection of requirement of

the system. This process involves generating document and requirement review.

System Design: Keeping the requirements in mind the system specifications are

translated in to a software representation. In this phase the designer emphasizes on

algorithm, data structure, software architecture etc.

Coding: In this phase programmer starts his coding in order to give a full sketch

of product. In other words system specifications are only converted in to machine

readable compute code.

Implementation: The implementation phase involves the actual coding or program-

ming of the software. The output of this phase is typically the library,executables,

user manuals and additional software documentation

Testing: In this phase all programs (models) are integrated and tested to ensure

that the complete system meets the software requirements. The testing is concerned

with verification and validation.
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Maintenance: The maintenance phase is the longest phase in which the software

is updated to fulfil the changing customer need, adapt to accommodate change in

the external environment, correct errors and oversights previously undetected in the

testing phase, enhance the efficiency of the software.

5.1.2 Reason for choosing waterfall model as development

model

• Clear project objectives.

• Stable project requirements.

• Progress of system is measurable.

• Strict sign-off requirements.

• Helps you to be perfect.

• Logic of software development is clearly understood.

• Production of a formal specification

• Better resource allocation.

• Improves quality. The emphasis on requirements and design before writing a

single line of code ensures minimal wastage of time and effort and reduces the

risk of schedule slippage.

• Less human resources required as once one phase is finished those people can

start working on to the next phase.

5.2 Design using UML

Designing UML diagram specifies, how the process within the system communicates

along with how the objects with in the process collaborate using both static as well as

dynamic UML diagrams since in this ever-changing world of Object Oriented applica-

tion development, it has been getting harder and harder to develop and manage high

quality applications in reasonable amount of time. As a result of this challenge and

the need for a universal object modeling language every one could use, the Unified

Modeling Language (UML) is the Information industries version of blue print. It is a

method for describing the systems architecture in detail. Easier to build or maintains

system, and to ensure that the system will hold up to the requirement changes.
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Figure 5.1: Waterfall Model

5.3 Data Flow Diagram

A data flow diagram (DFD) is graphic representation of the ”flow” of data through

an information system. A data flow diagram can also be used for the visualization of

data processing (structured design). It is common practice for a designer to draw a

context-level DFD first which shows the interaction between the system and outside

entities. DFDs show the flow of data from external entities into the system, how

the data moves from one process to another, as well as its logical storage. There are

only four symbols: 1. Squares representing external entities, which are sources and

destinations of information entering and leaving the system. 2. Rounded rectangles

representing processes, in other methodologies, may be called ’Activities’, ’Actions’,

’Procedures’, ’Subsystems’ etc. which take data as input, do processing to it, and

output it. 3. Arrows representing the data flows, which can either, be electronic data

or physical items. It is impossible for data to flow from data store to data store except

via a process, and external entities are not allowed to access data stores directly. 4.

The three-sided rectangle is representing data stores should both receive information

for storing and provide it for further processing.
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Figure 5.2: Data Flow Diagram

5.4 Class Diagram

UML class diagram shows the static structure of the model. The class diagram is a col-

lection of static modeling elements, such as classes and their relationships, connected

as a graph to each other and to their contents. The class diagram is the main building

block of object oriented modeling. It is used both for general conceptual modeling of

the systematic of the application, and for detailed modeling translating the models

into programming code. Class diagrams can also be used for data modeling. The

classes in a class diagram represent both the main objects and or interactions in the

application and the objects to be programmed.

5.5 Use Case Diagram

A use case defines a goal-oriented set of interactions between external entities and the

system under consideration. The external entities which interact with the system are

its actors. A set of use cases describe the complete functionality of the system at a

particular level of detail and it can be graphically denoted by the use case diagram.

5.6 Activity Diagram

An activity diagram shows the sequence of steps that make up a complex process. An

activity is shown as a round box containing the name of the operation. An outgoing

solid arrow attached to the end of the activity symbol indicates a transition triggered
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Figure 5.3: Class Diagram

by the completion. Activity diagram is another important diagram in UML to de-

scribe the dynamic aspects of the system. Activity diagram is basically a flowchart

to represent the flow from one activity to another activity. The activity can be de-

scribed as an operation of the system. The control flow is drawn from one operation

to another. Activity is a particular operation of the system. Activity diagrams are

not only used for visualizing the dynamic nature of a system, but they are also used to

construct the executable system by using forward and reverse engineering techniques.

The only missing thing in the activity diagram is the message part. It does not show

any message flow from one activity to another. Activity diagram is sometimes con-

sidered as the flowchart. Although the diagrams look like a flowchart, they are not.

It shows different flows such as parallel, branched, concurrent, and single.

5.7 Sequence Diagram

Sequence diagram are an easy and intuitive way of describing the behaviour of a system

by viewing the interaction between the system and the environment. A sequence

diagram shows an interaction arranged in a time sequence. A sequence diagram

has two dimensions: vertical dimension represents time, the horizontal dimension
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Figure 5.4: Use Case Diagram

represents the objects existence during the interaction. Basic elements:

• Vertical rectangle: Represent the object is active (method is being performed).

• Vertical dashed line: Represent the life of the object.

• X: represent the life end of an object. (Being destroyed from memory)

• Horizontal line with arrows: Messages from one object to another.
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Figure 5.5: Activity Diagram
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Figure 5.6: Sequence Diagram
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6.1 Introduction

The implementation phase of the project is where the detailed design is actually

transformed into working code. Aim of the phase is to translate the design into a

best possible solution in a suitable programming language. This chapter covers the

implementation aspects of the project, giving details of the programming language

and development environment used. It also gives an overview of the core modules

of the project with their step by step flow. The implementation stage requires the

following tasks:

Careful planning.

Investigation of system and constraints.

Design of methods to achieve the changeover.

Evaluation of the changeover method.

Correct decisions regarding selection of the platform.

Appropriate selection of the language for application development.

6.2 Training Code

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

import numpy as np

import pandas as pd

from sk l e a rn . p r ep r o c e s s i ng import LabelEncoder

from sk l e a rn . u t i l s import s h u f f l e

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

# Reading the datase t

de f r ead da ta s e t ( ) :

d f = pd . r ead c sv ( ”C:\\ Users \\Aparna Vinod\\PycharmProjects \\Language Recognit ion \\MFCC FEATURES combined . csv ” )

#pr in t ( l en ( df . columns ) )

X = df [ df . columns [ 0 : 5 6 0 3 ] ] . va lue s

y = df [ df . columns [ 5 6 0 3 ] ]

# Encode the dependent v a r i a b l e

encoder = LabelEncoder ( )

encoder . f i t ( y )

y = encoder . t rans form ( y )

Y = one hot encode ( y )
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pr in t (X. shape )

return (X, Y)

# Def ine the encoder func t i on .

de f one hot encode ( l a b e l s ) :

n l a b e l s = len ( l a b e l s )

n u n i q u e l a b e l s = len (np . unique ( l a b e l s ) )

one hot encode = np . z e r o s ( ( n l a b e l s , n u n i q u e l a b e l s ) )

one hot encode [ np . arange ( n l a b e l s ) , l a b e l s ] = 1

return one hot encode

# Read the datase t

X, Y = read da ta s e t ( )

# S h u f f l e the datase t to mix up the rows .

X, Y = s h u f f l e (X, Y, random state =1)

# Convert the datase t i n to t r a i n and t e s t part

t ra in x , t e s t x , t r a in y , t e s t y = t r a i n t e s t s p l i t (X, Y, t e s t s i z e =0.20 , random state =415)

# Inpect the shape o f the t r a i n i n g and t e s t i n g .

p r i n t ( t r a i n x . shape )

p r i n t ( t r a i n y . shape )

p r i n t ( t e s t x . shape )

# Def ine the important parameters and v a r i a b l e to work with the t e n s o r s

l e a r n i n g r a t e = 0 .3

t r a i n i n g e p o c h s = 1000

c o s t h i s t o r y = np . empty ( shape =[1 ] , dtype=f loat )

n dim = X. shape [ 1 ]

p r i n t ( ”n dim” , n dim )

n c l a s s = 2

model path = ”C:\\ Users \\Aparna Vinod\\PycharmProjects \\Language Recognit ion \\LR”

# Def ine the number o f hidden l a y e r s and number o f neurons for each l a y e r

n hidden 1 = 60

n hidden 2 = 60
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n hidden 3 = 60

n hidden 4 = 60

x = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , n dim ] )

W = t f . Var iab le ( t f . z e r o s ( [ n dim , n c l a s s ] ) )

b = t f . Var iab le ( t f . z e r o s ( [ n c l a s s ] ) )

y = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , n c l a s s ] )

# Def ine the model

de f m u l t i l a y e r p e r c e p t r o n (x , weights , b i a s e s ) :

# Hidden l a y e r with RELU a c t i v a t i o n s d

l a y e r 1 = t f . add ( t f . matmul (x , weights [ ’ h1 ’ ] ) , b i a s e s [ ’ b1 ’ ] )

l a y e r 1 = t f . nn . s igmoid ( l a y e r 1 )

# Hidden l a y e r with sigmoid a c t i v a t i o n

l a y e r 2 = t f . add ( t f . matmul ( l aye r 1 , weights [ ’ h2 ’ ] ) , b i a s e s [ ’ b2 ’ ] )

l a y e r 2 = t f . nn . s igmoid ( l a y e r 2 )

# Hidden l a y e r with sigmoid a c t i v a t i o n

l a y e r 3 = t f . add ( t f . matmul ( l aye r 2 , weights [ ’ h3 ’ ] ) , b i a s e s [ ’ b3 ’ ] )

l a y e r 3 = t f . nn . s igmoid ( l a y e r 3 )

# Hidden l a y e r with RELU a c t i v a t i o n

l a y e r 4 = t f . add ( t f . matmul ( l aye r 3 , weights [ ’ h4 ’ ] ) , b i a s e s [ ’ b4 ’ ] )

l a y e r 4 = t f . nn . r e l u ( l a y e r 4 )

# Output l a y e r with l i n e a r a c t i v a t i o n

o u t l a y e r = t f . matmul ( l aye r 4 , weights [ ’ out ’ ] ) + b i a s e s [ ’ out ’ ]

return o u t l a y e r

# Def ine the weights and the b i a s e s for each l a y e r

weights = {
’ h1 ’ : t f . Var iab le ( t f . t runcated normal ( [ n dim , n hidden 1 ] ) ) ,

’ h2 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 1 , n hidden 2 ] ) ) ,

’ h3 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 2 , n hidden 3 ] ) ) ,
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’ h4 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 3 , n hidden 4 ] ) ) ,

’ out ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 4 , n c l a s s ] ) )

}
b i a s e s = {

’ b1 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 1 ] ) ) ,

’ b2 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 2 ] ) ) ,

’ b3 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 3 ] ) ) ,

’ b4 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 4 ] ) ) ,

’ out ’ : t f . Var iab le ( t f . t runcated normal ( [ n c l a s s ] ) )

}

# I n i t i a l i z e a l l the v a r i a b l e s

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

saver = t f . t r a i n . Saver ( )

# Cal l your model de f ined

y = m u l t i l a y e r p e r c e p t r o n (x , weights , b i a s e s )

# Def ine the co s t func t i on and opt imize r

c o s t f u n c t i o n = t f . reduce mean ( t f . nn . s o f t m a x c r o s s e n t r o p y w i t h l o g i t s ( l o g i t s=y , l a b e l s=y ) )

t r a i n i n g s t e p = t f . t r a i n . GradientDescentOptimizer ( l e a r n i n g r a t e ) . minimize ( c o s t f u n c t i o n )

s e s s = t f . S e s s i on ( )

s e s s . run ( i n i t )

# Calcu la te the co s t and the accuracy for each epoch

mse h i s to ry = [ ]

a c c u r a c y h i s t o r y = [ ]

for epoch in range ( t r a i n i n g e p o c h s ) :

s e s s . run ( t r a i n i n g s t e p , f e e d d i c t={x : t ra in x , y : t r a i n y })

co s t = s e s s . run ( c o s t f u n c t i o n , f e e d d i c t={x : t ra in x , y : t r a i n y })

c o s t h i s t o r y = np . append ( c o s t h i s t o r y , co s t )

c o r r e c t p r e d i c t i o n = t f . equal ( t f . argmax (y , 1 ) , t f . argmax ( y , 1 ) )

accuracy = t f . reduce mean ( t f . c a s t ( c o r r e c t p r e d i c t i o n , t f . f l o a t 3 2 ) )

# pr in t ( ”Accuracy : ” , ( s e s s . run ( accuracy , f e e d d i c t={x : t e s t x , y : t e s t y } ) ) )
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pred y = s e s s . run (y , f e e d d i c t={x : t e s t x })

mse = t f . reduce mean ( t f . square ( pred y − t e s t y ) )

mse = s e s s . run (mse )

mse h i s to ry . append ( mse )

accuracy = ( s e s s . run ( accuracy , f e e d d i c t={x : t ra in x , y : t r a i n y } ) )

a c c u r a c y h i s t o r y . append ( accuracy )

p r i n t ( ’ epoch : ’ , epoch , ’ − ’ , ’ c o s t : ’ , cost , ” − MSE: ” , mse , ”− Train Accuracy : ” , accuracy )

save path = saver . save ( s e s s , model path )

p r i n t ( ”Model saved in f i l e : %s ” % save path )

# Plot mse and accuracy graph

p l t . p l o t ( mse his tory , ’ r ’ )

p l t . show ( )

p l t . p l o t ( a c c u r a c y h i s t o r y )

p l t . show ( )

# Print the f i n a l accuracy

c o r r e c t p r e d i c t i o n = t f . equal ( t f . argmax (y , 1 ) , t f . argmax ( y , 1 ) )

accuracy = t f . reduce mean ( t f . c a s t ( c o r r e c t p r e d i c t i o n , t f . f l o a t 3 2 ) )

p r i n t ( ” Test Accuracy : ” , ( s e s s . run ( accuracy , f e e d d i c t={x : t e s t x , y : t e s t y } ) ) )

# Print the f i n a l mean square error

pred y = s e s s . run (y , f e e d d i c t={x : t e s t x })

mse = t f . reduce mean ( t f . square ( pred y − t e s t y ) )

p r i n t ( ”MSE: %.4 f ” % s e s s . run (mse ) )

6.3 Testing Code

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

import numpy as np

import pandas as pd

from sk l e a rn . p r ep r o c e s s i ng import LabelEncoder
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from sk l e a rn . u t i l s import s h u f f l e

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

import random

# Reading the datase t

de f r ead da ta s e t ( ) :

d f = pd . r ead c sv ( ”C:\\ Users \\Aparna Vinod\\PycharmProjects \\Language Recognit ion \\MFCC FEATURES combined . csv ” )

X = df [ df . columns [ 0 : 5 6 0 3 ] ] . va lue s

y1 = df [ df . columns [ 5 6 0 3 ] ]

encoder = LabelEncoder ( )

encoder . f i t ( y1 )

y = encoder . t rans form ( y1 )

Y = one hot encode ( y )

# Return

return (X, Y, y1 )

# Def ine the encoder func t i on .

de f one hot encode ( l a b e l s ) :

n l a b e l s = len ( l a b e l s )

n u n i q u e l a b e l s = len (np . unique ( l a b e l s ) )

one hot encode = np . z e r o s ( ( n l a b e l s , n u n i q u e l a b e l s ) )

one hot encode [ np . arange ( n l a b e l s ) , l a b e l s ] = 1

return one hot encode

X, Y, y1 = read da ta s e t ( )

model path = ”C:\\ Users \\Aparna Vinod\\PycharmProjects \\Language Recognit ion \\LR”

l e a r n i n g r a t e = 0 .3

t r a i n i n g e p o c h s = 1000

c o s t h i s t o r y = np . empty ( shape =[1 ] , dtype=f loat )

n dim = 5603

n c l a s s = 2

# Def ine the number o f hidden l a y e r s and number o f neurons for each l a y e r

n hidden 1 = 60

Dept Of CSE, CMRIT, Bengaluru - 560037 33



Spoken Language Recognition with deep learning Chapter 6

n hidden 2 = 60

n hidden 3 = 60

n hidden 4 = 60

x = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , n dim ] )

W = t f . Var iab le ( t f . z e r o s ( [ n dim , n c l a s s ] ) )

b = t f . Var iab le ( t f . z e r o s ( [ n c l a s s ] ) )

y = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , n c l a s s ] )

# Def ine the model

de f m u l t i l a y e r p e r c e p t r o n (x , weights , b i a s e s ) :

# Hidden l a y e r with RELU a c t i v a t i o n s d

l a y e r 1 = t f . add ( t f . matmul (x , weights [ ’ h1 ’ ] ) , b i a s e s [ ’ b1 ’ ] )

l a y e r 1 = t f . nn . s igmoid ( l a y e r 1 )

# Hidden l a y e r with RELU a c t i v a t i o n

l a y e r 2 = t f . add ( t f . matmul ( l aye r 1 , weights [ ’ h2 ’ ] ) , b i a s e s [ ’ b2 ’ ] )

l a y e r 2 = t f . nn . s igmoid ( l a y e r 2 )

# Hidden l a y e r with RELU a c t i v a t i o n

l a y e r 3 = t f . add ( t f . matmul ( l aye r 2 , weights [ ’ h3 ’ ] ) , b i a s e s [ ’ b3 ’ ] )

l a y e r 3 = t f . nn . s igmoid ( l a y e r 3 )

# Hidden l a y e r with RELU a c t i v a t i o n

l a y e r 4 = t f . add ( t f . matmul ( l aye r 3 , weights [ ’ h4 ’ ] ) , b i a s e s [ ’ b4 ’ ] )

l a y e r 4 = t f . nn . r e l u ( l a y e r 4 )

# Output l a y e r with l i n e a r a c t i v a t i o n

o u t l a y e r = t f . matmul ( l aye r 4 , weights [ ’ out ’ ] ) + b i a s e s [ ’ out ’ ]

return o u t l a y e r

# Def ine the weights and the b i a s e s for each l a y e r

weights = {
’ h1 ’ : t f . Var iab le ( t f . t runcated normal ( [ n dim , n hidden 1 ] ) ) ,

’ h2 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 1 , n hidden 2 ] ) ) ,

’ h3 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 2 , n hidden 3 ] ) ) ,
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’ h4 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 3 , n hidden 4 ] ) ) ,

’ out ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 4 , n c l a s s ] ) )

}
b i a s e s = {

’ b1 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 1 ] ) ) ,

’ b2 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 2 ] ) ) ,

’ b3 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 3 ] ) ) ,

’ b4 ’ : t f . Var iab le ( t f . t runcated normal ( [ n hidden 4 ] ) ) ,

’ out ’ : t f . Var iab le ( t f . t runcated normal ( [ n c l a s s ] ) )

}

# I n i t i a l i z e a l l the v a r i a b l e s

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

saver = t f . t r a i n . Saver ( )

# Cal l your model de f ined

y = m u l t i l a y e r p e r c e p t r o n (x , weights , b i a s e s )

# Def ine the co s t func t i on and opt imize r

c o s t f u n c t i o n = t f . reduce mean ( t f . nn . s o f t m a x c r o s s e n t r o p y w i t h l o g i t s ( l o g i t s=y , l a b e l s=y ) )

t r a i n i n g s t e p = t f . t r a i n . GradientDescentOptimizer ( l e a r n i n g r a t e ) . minimize ( c o s t f u n c t i o n )

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

saver = t f . t r a i n . Saver ( )

s e s s = t f . S e s s i on ( )

s e s s . run ( i n i t )

saver . r e s t o r e ( s e s s , model path )

p r e d i c t i o n = t f . argmax (y , 1)

c o r r e c t p r e d i c t i o n = t f . equal ( p r ed i c t i on , t f . argmax ( y , 1 ) )

accuracy = t f . reduce mean ( t f . c a s t ( c o r r e c t p r e d i c t i o n , t f . f l o a t 3 2 ) )

# pr in t ( accuracy run )

p r i n t ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )

p r i n t ( ” 0 Stands f o r E i . e . Eng l i sh & 1 Stands f o r H i . e . Hindi ” )

p r i n t ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )

for i in range (480 , 520 ) :
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p r e d i c t i o n r u n = s e s s . run ( p r ed i c t i on , f e e d d i c t={x : X[ i ] . reshape (1 , 5603)})

accuracy run = s e s s . run ( accuracy , f e e d d i c t={x : X[ i ] . reshape (1 , 5603) , y : Y[ i ] . reshape (1 , 2)} )

p r i n t ( ” Or i g i na l Class : ” , y1 [ i ] , ” Pred ic ted Values : ” , p r e d i c t i o n r u n [ 0 ] , ” Accuracy : ” , accuracy run )

# pr in t ( s e s s . run ( p r ed i c t i on , f e e d d i c t={x : x t e s t } ) )

# pr in t ( s e s s . run ( accuracy , f e e d d i c t={x : x t e s t , y : y t e s t } ) )

6.4 Feature Extraction Code

import l i b r o s a

import csv

import numpy

import os

from path l i b import Path

#Librosa i s used for MFCC f e a t u r e e x t r a c t i o n

#csv module i s used to s t o r e the array as a spreadshee t

# 1 . Get the f i l e path to the inc luded audio example

a u d i o f i l e e n g=os . l i s t d i r ( ”C:\\Python35\\LangPred\\Audio\\English wav ” )

a u d i o f i l e h i n=os . l i s t d i r ( ”C:\\Python35\\LangPred\\Audio\\Hindi wav” )

c s v f i l e = ”C:\\Python35\\LangPred\\MFCC FEATURES. csv ”

i f os . path . e x i s t s ( c s v f i l e ) :

os . remove ( ”C:\\Python35\\LangPred\\MFCC FEATURES. csv ” )

with open ( c s v f i l e , ”a” ) as output :

w r i t e r = csv . w r i t e r ( output , l i n e t e r m i n a t o r=’\n ’ )

for a u d i o f i l e in a u d i o f i l e e n g :

p r i n t ( a u d i o f i l e )

# 2 . Load the audio as a waveform ‘y ‘

# Store the sampling ra t e as ‘ sr ‘

y , s r = l i b r o s a . load ( ”C:\\Python35\\LangPred\\Audio\\English wav \\”+a u d i o f i l e , durat ion =10.0)
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# 3 . Run the default beat t r a c k e r

#tempo , beat f rames = l i b r o s a . beat . b ea t t r a ck ( y=y , s r=s r )

#pr in t ( ’ Estimated tempo : { : . 2 f } beats per minute ’ . format ( tempo ) )

# 4 . Convert the frame i n d i c e s o f beat events i n to timestamps

#beat t imes = l i b r o s a . f r ames to t ime ( beat f rames , s r=s r )

#pr in t ( ”y =” ,y , ”\nsr =” , s r )

#pr in t ( ’ Saving output to beat t imes . csv ’ )

#l i b r o s a . output . t imes c sv ( ’ beat t imes . csv ’ , beat t imes )

mfccs=l i b r o s a . f e a t u r e . mfcc (y , sr , n mfcc =13)

mfccs2=numpy . concatenate ( mfccs )

mfccs2=numpy . append ( mfccs , [ ”E” ] )

#pr in t ( ” Features ex t rac t ed : \n” , mfccs , ”\nShape o f L i s t : ” , mfccs . shape )

p r i n t ( ”∗”∗50)

w r i t e r . writerow ( mfccs2 )

p r i n t ( ”∗”∗50)

#w r i t e r . wr i terows ( ”\n\n\n” )

for a u d i o f i l e in a u d i o f i l e h i n :

p r i n t ( a u d i o f i l e )

# 2 . Load the audio as a waveform ‘y ‘

# Store the sampling ra t e as ‘ sr ‘

y , s r = l i b r o s a . load ( ”C:\\Python35\\LangPred\\Audio\\Hindi wav\\”+a u d i o f i l e , durat ion =10.0)

# 3 . Run the default beat t r a c k e r

#tempo , beat f rames = l i b r o s a . beat . b ea t t r a ck ( y=y , s r=s r )

#pr in t ( ’ Estimated tempo : { : . 2 f } beats per minute ’ . format ( tempo ) )

# 4 . Convert the frame i n d i c e s o f beat events i n to timestamps

#beat t imes = l i b r o s a . f r ames to t ime ( beat f rames , s r=s r )

#pr in t ( ”y =” ,y , ”\nsr =” , s r )

#pr in t ( ’ Saving output to beat t imes . csv ’ )

#l i b r o s a . output . t imes c sv ( ’ beat t imes . csv ’ , beat t imes )

mfccs=l i b r o s a . f e a t u r e . mfcc (y , sr , n mfcc =13)

mfccs2=numpy . concatenate ( mfccs )

mfccs2=numpy . append ( mfccs , [ ”H” ] )

#pr in t ( ” Features ex t rac t ed : \n” , mfccs , ”\nShape o f L i s t : ” , mfccs . shape )

p r i n t ( ”∗”∗50)

Dept Of CSE, CMRIT, Bengaluru - 560037 37



Spoken Language Recognition with deep learning Chapter 6

w r i t e r . writerow ( mfccs2 )

output . c l o s e ( )

6.5 Process

• A number of recordings (In this case, 500 English recordings and 288 Hindi

recordings) have been taken.

• Each of these recordings is in mp3 format. They need to be .wav format and

can easily be converted using an online converter ( see future scope )

• The feature extraction code also trims every recording into ten seconds.

• Once the recordings are converted, features need to extracted from them in order

to classify into Hindi and English.

• This can be done using the Librosa function that is contained in the feature

extraction code.

• What the code will do, is extract MFCC features from each recording and classify

them into Hindi or English. Once this is complete, the features will get stored

into an excel sheet, with a class H or E at the end of each row.

• After all 788 recordings features have been extracted, a matrix in the excel sheet

of size 5603*788 is formed, i.e., 5603 rows and 788 columns.

• This needs to be stored in CSV format.

• Once the sheet is filled, it will be inputed into the training code and training of

the machine will begin.

6.6 Important Libraries used

6.6.1 Librosa

LibROSA is a python package for music and audio analysis. It provides the building

blocks necessary to create audio information retrieval systems.

• librosa.beat Functions for estimating tempo and detecting beat events.

• librosa.core Core functionality includes functions to load audio from disk, com-

pute various spectrogram representations, and a variety of commonly used tools

for music analysis. For convenience, all functionality in this submodule is di-

rectly accessible from the top-level librosa.* namespace.
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• librosa.decompose Functions for harmonic-percussive source separation (HPSS)

and generic spectrogram decomposition using matrix decomposition methods

implemented in scikit-learn.

• librosa.display Visualization and display routines using matplotlib.

• librosa.effects Time-domain audio processing, such as pitch shifting and time

stretching. This submodule also provides time-domain wrappers for the decom-

pose submodule.

• librosa.feature Feature extraction and manipulation. This includes low-level

feature extraction, such as chromagrams, pseudo-constant-Q (log-frequency)

transforms, Mel spectrogram, MFCC, and tuning estimation. Also provided

are feature manipulation methods, such as delta features, memory embedding,

and event-synchronous feature alignment.

• librosa.filters Filter-bank generation (chroma, pseudo-CQT, CQT, etc.). These

are primarily internal functions used by other parts of librosa.

• librosa.onset Onset detection and onset strength computation.

• librosa.output Text- and wav-file output.

• librosa.segment Functions useful for structural segmentation, such as recurrence

matrix construction, time-lag representation, and sequentially constrained clus-

tering.

• librosa.sequence Functions for sequential modeling. Various forms of Viterbi

decoding, and helper functions for constructing transition matrices.

• librosa.util Helper utilities (normalization, padding, centering, etc.)

All of these functions are not required, but functions like librosa.beat and librosa.feature

have been used.

6.6.2 Numpy

NumPy is the fundamental package for scientific computing in Python. It is a Python

library that provides a multidimensional array object, various derived objects (such

as masked arrays and matrices), and an assortment of routines for fast operations

on arrays, including mathematical, logical, shape manipulation, sorting, selecting,

I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations,

random simulation and much more. At the core of the NumPy package, is the ndarray

object. This encapsulates n-dimensional arrays of homogeneous data types, with many
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operations being performed in compiled code for performance. There are several

important differences between NumPy arrays and the standard Python sequences:

• NumPy arrays have a fixed size at creation, unlike Python lists (which can grow

dynamically). Changing the size of an ndarray will create a new array and delete

the original.

• The elements in a NumPy array are all required to be of the same data type,

and thus will be the same size in memory. The exception: one can have arrays

of (Python, including NumPy) objects, thereby allowing for arrays of different

sized elements.

• NumPy arrays facilitate advanced mathematical and other types of operations

on large numbers of data. Typically, such operations are executed more effi-

ciently and with less code than is possible using Pythons built-in sequences.

• A growing plethora of scientific and mathematical Python-based packages are

using NumPy arrays; though these typically support Python-sequence input,

they convert such input to NumPy arrays prior to processing, and they often

output NumPy arrays. In other words, in order to efficiently use much (per-

haps even most) of todays scientific/mathematical Python-based software, just

knowing how to use Pythons built-in sequence types is insufficient - one also

needs to know how to use NumPy arrays.

6.6.3 Matplolib

Matplotlib is a Python 2D plotting library which produces publication quality figures

in a variety of hardcopy formats and interactive environments across platforms. Mat-

plotlib can be used in Python scripts, the Python and IPython shells, the Jupyter note-

book, web application servers, and four graphical user interface toolkits.Matplotlib

tries to make easy things easy and hard things possible. You can generate plots, his-

tograms, power spectra, bar charts, errorcharts, scatterplots, etc., with just a few lines

of code. For simple plotting the pyplot module provides a MATLAB-like interface,

particularly when combined with IPython. For the power user, you have full control

of line styles, font properties, axes properties, etc, via an object oriented interface or

via a set of functions familiar to MATLAB users.

6.6.4 Pandas

Pandas is a Python package providing fast, flexible, and expressive data structures

designed to make working with relational or labeled data both easy and intuitive. It

aims to be the fundamental high-level building block for doing practical, real world
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data analysis in Python. Additionally, it has the broader goal of becoming the most

powerful and flexible open source data analysis / manipulation tool available in any

language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

• Tabular data with heterogeneously-typed columns, as in an SQL table or Excel

spreadsheet

• Ordered and unordered (not necessarily fixed-frequency) time series data.

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row and

column labels

• Any other form of observational / statistical data sets. The data actually need

not be labeled at all to be placed into a pandas data structure
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7.1 Introduction

Testing is an important phase in the development life cycle of the product this was

the phase where the error remaining from all the phases was detected. Hence testing

performs a very critical role for quality assurance and ensuring the reliability of the

software. Once the implementation is done, a test plan should be developed and run

on a given set of test data. Each test has a different purpose, all work to verify that all

the system elements have been properly integrated and perform allocated functions.

The testing process is actually carried out to make sure that the product exactly does

the same thing what is supposed to do. Testing is the final verification and validation

activity within the organization itself. In the testing stage following goals are tried to

achieve:-

• To affirm the quality of the project.

• To find and eliminate any residual errors from previous stages.

• To validate the software as the solution to the original problem.

• To provide operational reliability of the system.

During testing the major activities are concentrated on the examination and modifi-

cation of the source code. The test cases executed for this project are listed below.

Description of the test case, steps to be followed; expected result, status and screen-

shots are explained with each of the test cases.

7.2 Testing Methodologies

There are many different types of testing methods or techniques used as part of the

software testing methodology. Some of the important types of testing are:

7.2.1 White Box Testing

White Box Testing is a testing in which in which the software tester has knowledge

of the inner workings, structure and language of the software, or at least its purpose.

It is purpose. It is used to test areas that cannot be reached from a black box level.

Using white box testing we can derive test cases that:

• Guarantee that all independent paths within a module have been exercised at

least once.

• Exercise all logical decisions on their true and false sides.
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• Execute all loops at their boundaries and within their operational bounds.

• Execute internal data structure to assure their validity.

7.2.2 Black Box Testing

Black Box Testing is testing the software without any knowledge of the inner workings,

structure or language of the module being tested. Black box tests, as most other kinds

of tests, must be written from a definitive source document, such as specification or

requirements document, such as specification or requirements document. It is a testing

in which the software under test is treated, as a black box you cannot see into it. The

test provides inputs and responds to outputs without considering how the software

works. It uncovers a different class of errors in the following categories:

• Incorrect or missing function.

• Interface errors.

• Performance errors.

• Initialization and termination errors.

• Errors in objects.

Advantages:

• The test is unbiased as the designer and the tester are independent of each other.

• The tester does not need knowledge of any specific programming languages.

• The test is done from the point of view of the user, not the designer.

• Test cases can be designed as soon as the specifications are complete.

7.2.3 Unit Testing

Unit testing is usually conducted as part of a combined code and unit test phase of

the software lifecycle, although it is not uncommon for coding and unit testing to be

conducted as two distinct phases. Test strategy and approach Field testing will be

performed manually and functional tests will be written in detail.

Test objectives:

• All Components must work properly.

• Correct Features of audio clips must be obtained.

• Correct distinguishing of Hindi and English must be made.
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Test Case ID

Purpose

Preconditions

Inputs

Expected Outputs

Postconditions

Table 7.1: Unit Test Cases

7.3 Running and Testing of codes

7.3.1 Execution of Feature Extraction Code

The code is run in PyCharm, which is a cross platform IDE for Python. One execution

of the code, the excel sheet in csv format is generated, containing the features extracted

from the 788 recordings. This CSV file will now be inputted into the training and

testing codes.

7.3.2 Execution of Training code

The code is run in PyCharm, which is a cross platform IDE for Python. The training

of the features of the recordings will run for a 1000 iterations (This can be varied).After

the iterations are complete, the Mean Square Error (MSE) is found. MSE is a network

performance function. It measures the network’s performance according to the mean

of squared errors. Difference between predicted value and actual value in test data is

the MSE.mse(E,X,PP) takes from one to three arguments,

E - Matrix or cell array of error vector(s).
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X - Vector of all weight and bias values (ignored).

PP - Performance parameters (ignored).

and returns the mean squared error.

Next, the accuracy of the Training data is calculated. This will vary constantly
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depending on the number of voice recordings that are inputted. The more the record-

ings, the higher the accuracy of predicting the correct output.In this case, the accuracy

varies from 70-80%.The shape of the training and testing model is also printed.

A graph of Accuracy on the Y-axis and Number of Epochs on the X-axis is then

plotted.
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7.3.3 Execution of Testing Code

For testing, 20% of the recordings have been separated already by the code.When the

testing code is run, the output will be shown, identifying whether the recordings are

in Hindi or in English.
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A project like language identification using mfcc extracted feature values has never

been attempted before. Right from the start it was identified that a 100This project

has been a terrific journey where lots of knew concepts and studies were learnt, that

have been summarized in this report.

8.1 Future Scope

The options for future scope are vast. A user interface for the system needs to be

made, wherein a user will speak and the backend process will take place, giving the

language spoken as an output.

This could be in the form of an application or implemented into a hardware device.

All processes of converting the mp3 audio into .wav format, placing the recording

into the csv file, clipping of the audio etc. can be hidden from the user by creating a

good front end.

8.2 Building a complete system

The aim of this project was to implement language recognising features to a telephone

call that is being made by a customer to a service provider.

Based on the language, the call must get transferred to a provider who knows that

particular language.

Thus a complete system would be identification of over 15 languages. For that

thousands of recordings for each language would need to be provided.
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