
VISVESVARAYA TECHNOLOGICAL UNIVERSITY
JNANASANGAMA, BELAGAVI - 590018

“TAIPAN”

Thesis submitted in partial fulfillment of the curriculum prescribed for
the award of the degree of Bachelor of Engineering in

Computer Science & Engineering by

1CR14CS139 Simran Sarawagi
1CR14CS141 Sourabh Pandey

Under the Guidance of

Mrs. Sagarika Behera
Associate Professor

Department of CSE, CMRIT, Bengaluru

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
#132, AECS LAYOUT, IT PARK ROAD, BENGALURU - 560037

2017-18

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

JNANASANGAMA, BELAGAVI - 590018

Certificate
This is to certify that the project entitled “TAIPAN” is a bonafide work carried

out by Simran Sarawagi bearing USN:1CR14CS139 , Sourabh Pandey bear-

ing USN:1CR14CS141 in partial fulfillment of the award of the degree of Bachelor

of Engineering in Computer Science & Engineering of Visvesvaraya Technological

University, Belgaum, during the year 2017-18. It is certified that all corrections / sug-

gestions indicated during reviews have been incorporated in the report. The project

report has been approved as it satisfies the academic requirements in respect of the

project work prescribed for the Bachelor of Engineering Degree.

Signature of Guide

Mrs. Sagarika Behera

Associate Professor

Department of CSE

CMRIT, Bengaluru - 37

Signature of HoD

Dr. Jhansi Rani P

Professor & Head

Department of CSE

CMRIT, Bengaluru - 37

Signature of Principal

Dr. Sanjay Jain

Principal

CMRIT,

Bengaluru - 37

External Viva

Name of the Examiners Institution Signature with Date

1.

2.

Acknowledgement

We take this opportunity to thank all of those who have generously

helped us to give a proper shape to our work and complete our BE project

successfully. A successful project is fruitful culmination efforts by many

people, some directly involved and some others indirectly, by providing

support and encouragement.

We would like to thank Dr. SANJAY JAIN , Principal , CMRIT ,

for providing excellent academic environment in the college.

We would like to express our gratitude towards Dr. JHANSI RANI

, Professor & HOD , Dept of CSE , CMRIT , who provided guidance and

gave valuable suggestions regarding the project.

We consider it a privilege and honour to express our sincere gratitude

to our Internal Guide Mrs. SAGARIKA BEHERA , Associate Pro-

fessor , Department of Computer Science & Engineering , CMRIT , for

her valuable guidance throughout the tenure of this project work.

Simran Sarawagi

Sourabh Pandey

i

Table of Contents

Table of Contents ii

List of Figures iv

List of Tables v

Abstract vi

1 PREAMBLE 1

1.1 Introduction . 1

1.2 Problem Statement . 1

1.3 Existing System . 2

1.4 What Wireshark is Not . 2

1.5 Some Intended Purpose . 2

1.6 Features . 3

1.7 Proposed System . 3

2 LITERATURE SURVEY 5

2.1 INTRODUCTION . 5

2.2 LITERATURE SURVEY . 5

2.3 PAPER 1 . 6

2.4 PAPER 2 . 6

2.5 PAPER 3 . 6

2.6 PAPER 4 . 7

3 THEORETICAL BACKGROUND 8

3.1 INTRODUCTION . 8

3.2 XMLTODICT . 8

3.3 BYTEARRAY . 9

3.4 STRUCT.UNPACK() . 10

4 SYSTEM REQUIREMENT SPECIFICATION 11

ii

4.1 INTRODUCTION . 11

4.2 FUNCTIONAL REQUIREMENTS . 12

4.3 NON-FUNCTIONAL REQUIREMENTS 12

4.4 HARDWARE REQUIREMENTS . 15

4.5 SOFTWARE REQUIREMENTS . 15

4.6 SOFTWARE QUALITY ATTRIBUTES 16

5 SYSTEM DESIGN 17

5.1 INTRODUCTION . 17

5.2 SYSTEM DEVELOPMENT METHODOLOGY 17

5.3 DESIGN USING UML . 19

5.4 DATA FLOW DIAGRAM . 20

5.5 CLASS DIAGRAM . 21

5.6 USE CASE DIAGRAM . 21

5.7 ACTIVITY DIAGRAM . 22

5.8 SEQUENCE DIAGRAM . 22

6 IMPLEMENTATION 25

6.1 INTRODUCTION . 25

6.2 Generating Binary File . 25

6.3 Display . 27

6.4 Reading XML File . 30

6.5 Convert . 33

6.6 Show . 35

7 TESTING AND RESULTS 37

7.1 INTRODUCTION . 37

7.2 TESTING METHODOLOGIES . 37

7.3 RESULTS . 39

8 CONCLUSION & FUTURE SCOPE 41

8.1 CONCLUSION . 42

8.2 FUTURE SCOPE . 42

8.3 BUILD A COMPLETE SYSTEM . 42

8.4 FUTURE WORK . 42

References 43

9 APPENDIX 44

iii

List of Figures

1.1 General Wireshark Dissector . 1

1.2 Wireshark Architecture . 2

3.1 Accessing Elements . 8

3.2 Source Parameter . 9

4.1 Software Quality Attributes . 16

5.1 Waterfall Model . 19

5.2 Class Diagram . 21

5.3 Use Case Diagram . 22

5.4 Activity Diagram . 23

5.5 Sequence Diagram . 24

iv

List of Tables

5.1 Symbols used in UML . 20

7.1 Unit Test Cases . 39

v

Abstract

Dissectors are used for network troubleshooting, analysis, software and

communications protocol development, and education. It is a data cap-

turing program that ”understands” the structure (encapsulation) of differ-

ent networking protocols. It can parse and display the fields, along with

their meanings as specified by different networking protocols. The exist-

ing model for dissector is Wireshark Dissector. Wireshark is a network

packet analyzer. A network packet analyzer will try to capture network

packets and tries to display that packet data as detailed as possible. Each

dissector decodes its part of the protocol, and then hands off decoding to

subsequent dissectors for an encapsulated protocol.

Taipan is a python based tool. It is used for data conversion, encapsula-

tion, information security and integrity. It is a tool used for converting

the information into binary form restricting its access to normal users. It

also defines the structure of actual information, known as metadata which

helps user to get access on the real data. It can also be used to render the

exact information back to any authorized user with the help of the avail-

able the structure. This provides confidentiality, integrity and authenticity

for the recorded information.

The aim of this project is to present a design of a simple, tool for in-

formation security and packing. It can parse and display the fields, along

with their meanings as specified by different networking protocols.

vi

Chapter 1

PREAMBLE

1.1 Introduction

Dissectors are used for network troubleshooting, analysis, software and communi-

cations protocol development, and education. It is a data capturing program that

”understands” the structure (encapsulation) of different networking protocols. It can

parse and display the fields, along with their meanings as specified by different net-

working protocols. Each dissector decodes its part of the protocol, and then hands

off decoding to subsequent dissectors for an encapsulated protocol.

Figure 1.1: General Wireshark Dissector

The existing model for dissector is Wireshark Dissector. Wireshark is a network

packet analyzer. A network packet analyzer will try to capture network packets and

tries to display that packet data as detailed as possible.

1.2 Problem Statement

• Implementation of Packet Sniffer.

• Program should identify header of each protocol.

• Use multi-core programming.

• Filtering of Packets.
1

TAIPAN CHAPTER 1

• Importing the captured packets.

• Detecting abnormal error in networking.

1.3 Existing System

Wireshark is a network packet analyzer. A network packet analyzer will try to capture

network packets and tries to display that packet data as detailed as possible. You could

think of a network packet analyzer as a measuring device used to examine whats going

on inside a network cable, just like a voltmeter is used by an electrician to examine

whats going on inside an electric cable (but at a higher level, of course). In the past,

such tools were either very expensive, proprietary, or both. However, with the advent

of Wireshark, all that has changed. Wireshark is perhaps one of the best open source

packet analyzers available today.

Figure 1.2: Wireshark Architecture

1.4 What Wireshark is Not

Here are some things Wireshark does not provide:

• Wireshark isnt an intrusion detection system. It will not warn you when someone

does strange things on your network that he/she isnt allowed to do. However, if

strange things happen, Wireshark might help you figure out what is really going

on.

• Wireshark will not manipulate things on the network, it will only measure things

from it. Wireshark doesnt send packets on the network or do other active things

(except for name resolutions, but even that can be disabled).

1.5 Some Intended Purpose

Here are some examples people use Wireshark for:

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 2

TAIPAN CHAPTER 1

• Network administrators use it to troubleshoot network problems

• Network security engineers use it to examine security problems

• QA engineers use it to verify network applications

• Developers use it to debug protocol implementations

• People use it to learn network protocol internals

Beside these examples Wireshark can be helpful in many other situations too.

1.6 Features

The following are some of the many features Wireshark provides:

• Available for UNIX and Windows.

• Capture live packet data from a network interface.

• Open files containing packet data captured with tcpdump/WinDump, Wire-

shark, and a number of other packet capture programs.

• Import packets from text files containing hex dumps of packet data.

• Display packets with very detailed protocol information.

• Save packet data captured.

• Export some or all packets in a number of capture file formats.

• Filter packets on many criteria.

• Search for packets on many criteria.

• Colorize packet display based on filters.

• Create various statistics.

1.7 Proposed System

Dissector is simply a protocol parser. Wireshark contains dozens of protocol dissectors

for the most popular network protocols. In case when some dissector needs to be

adjusted or creation of completely new protocol dissector is desired, knowledge of

dissector creation procedure might be very useful. Each dissector decodes its part of

the protocol, and then hands off decoding to subsequent dissectors for an encapsulated

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 3

TAIPAN CHAPTER 1

protocol. Every dissection starts with the Frame dissector which dissects the packet

details of the capture file itself (e.g. timestamps). From there it passes the data on

to the lowest-level data dissector, e.g. the Ethernet dissector for the Ethernet header.

The payload is then passed on to the next dissector (e.g. IP) and so on. At each

stage, details of the packet will be decoded and displayed. The amount of resources

dissectors needs depends on your environment and on the size of the capture file you

are analyzing. Larger capture files will require more memory and disk space. If a

dissector runs out of memory it will crash.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 4

Chapter 2

LITERATURE SURVEY

2.1 INTRODUCTION

Literature survey is mainly carried out in order to analyze the background of the

current project which helps to find out flaws in the existing system and guides on which

unsolved problems we can work out. So, the following topics not only illustrate the

background of the project but also uncover the problems and flaws which motivated

to propose solutions and work on this project.

2.2 LITERATURE SURVEY

Literature survey is the documentation of a comprehensive review of the published

and unpublished work from secondary sources data in the areas of specific interest to

the researcher. The library is a rich storage base for secondary data and researchers

used to spend several weeks and sometimes months going through books, journals,

newspapers, magazines, conference proceedings, doctoral dissertations, master’s the-

ses, government publications and financial reports to find information on their research

topic. Reviewing the literature on the topic area at this time helps the research er to

focus further interviews more meaningfully on certain aspects found to be important

is the published studies even if these had not surfaced during the earlier question-

ing .So the literature survey is important for gathering the secondary data for the

research which might be proved very helpful in the research. The literature survey

can be conducted for several reasons. The literature review can be in any area of the

business.

5

TAIPAN CHAPTER 2

2.3 PAPER 1

Title: Capturing Live Data Network

Context:

Capturing live network data is one of the major features of the dissector. The dissector

capture engine provides the following features:

• Capture from different kinds of network hardware such as Ethernet or 802.11.

• Stop the capture on different triggers such as the amount of captured data,

elapsed time, or the number of packets.Simultaneously show decoded packets

while dissector is capturing.Filter packets, reducing the amount of data to be

captured.

• Save packets in multiple files while doing a long term capture, optionally rotating

through a fixed number of files.Simultaneously capture from multiple network

interfaces.

The capture engine still lacks the following features:

• Stop capturing (or perform some other action) depending on the captured data.

2.4 PAPER 2

Title: Viewing Captured Files

Context:

Once you have captured some packets or you have opened a previously saved capture

file, you can view the packets that are displayed in the packet list pane by simply

clicking on a packet in the packet list pane, which will bring up the selected packet in

the tree view and byte view panes.You can then expand any part of the tree to view

detailed information about each protocol in each packet. Clicking on an item in the

tree will highlight the corresponding bytes in the byte view.It also has the Acknowl-

edgement number in the TCP header selected, which shows up in the byte view as

the selected bytes.

2.5 PAPER 3

Title: TCP Analysis

Context:

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 6

TAIPAN CHAPTER 2

By default, Wiresharks TCP dissector tracks the state of each TCP session and pro-

vides additional information when problems or potential problems are detected. Anal-

ysis is done once for each TCP packet when a capture file is first opened. Packets

are processed in the order in which they appear in the packet list. You can enable or

disable this feature via the Analyze TCP sequence numbers TCP dissector preference.

2.6 PAPER 4

Title: Packet Reassembly

Context:

Network protocols often need to transport large chunks of data which are complete in

themselves, e.g. when transferring a file. The underlying protocol might not be able to

handle that chunk size (e.g. limitation of the network packet size), or is stream-based

like TCP, which doesnt know data chunks at all.In that case the network protocol has

to handle the chunk boundaries itself and (if required) spread the data over multi-

ple packets. It obviously also needs a mechanism to determine the chunk boundaries

on the receiving side.Wireshark calls this mechanism reassembly, although a specific

protocol specification might use a different term for this (e.g. desegmentation, defrag-

mentation, etc).

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 7

Chapter 3

THEORETICAL BACKGROUND

3.1 INTRODUCTION

3.2 XMLTODICT

Xmltodict is another simple library that aims at making XML feel like working with

JSON. An XML file like this:

<mydocument has=”an a t t r i b u t e ”>

<and>

<many>elements</many>

<many>more elements</many>

</and>

<plus a=”complex”>

element as we l l

</plus>

</mydocument>

can be loaded into a Python dict like this: import xmltodict with open(’path/to/file.xml’)

as fd: doc = xmltodict.parse(fd.read())

and then you can access elements, attributes and values like this:

Figure 3.1: Accessing Elements

xmltodict also lets you roundtrip back to XML with the unparse function, has

a streaming mode suitable for handling files that dont fit in memory and supports
8

TAIPAN CHAPTER 3

namespaces.

3.3 BYTEARRAY

The bytearray() method returns a bytearray object which is an array of the given

bytes. The syntax of bytearray() method is: bytearray([source[, encoding[, errors]]])

The bytearray() method returns a bytearray object which is a mutable (can be modi-

fied) sequence of integers in the range 0 ¡=x ¡ 256. If you want the immutable version,

use bytes() method.

3.3.1 BYTEARRAY PARAMETERS

The bytearray() takes three optional parameters:

• Source (Optional) - source to initialize the array of bytes.

• Encoding (Optional) - if source is a string, the encoding of the string.

• errors (Optional) - if source is a string, the action to take when the encoding

conversion fails.

The source parameter can be used to initialize the byte array in the following ways:

Figure 3.2: Source Parameter

The bytearray() method returns an array of bytes of the given size and initialization

values.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 9

TAIPAN CHAPTER 3

3.4 STRUCT.UNPACK()

Syntax: struct.unpack(fmt, string) Return the values v1, v2,.. that are unpacked ac-

cording to the given format(1st argument). Values returned by this function are

returned as tuples of size that is equal to the number of values passed through

struct.pack() during packing.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 10

Chapter 4

SYSTEM REQUIREMENT

SPECIFICATION

4.1 INTRODUCTION

This chapter describes about the requirements. It specifies the hardware and software

requirements that are required in order to run the application properly. The Software

Requirement Specification (SRS) is explained in detail, which includes overview of

dissertation as well as the functional and non-functional requirement of this disserta-

tion.

A SRS document describes all data, functional and behavioral requirements of the

software under production or development. SRS is a fundamental document, which

forms the foundation of the software development process. Its the complete descrip-

tion of the behavior of a system to be developed. It not only lists the requirements

of a system but also has a description of its major feature. Requirement Analysis

in system engineering and software engineering encompasses those tasks that go into

determining the need or conditions to meet for a new or altered product, taking ac-

count of the possibly conflicting requirements of the various stakeholders, such as

beneficiaries or users. Requirement Analysis is critical to the success to a develop-

ment project. Requirement must be documented, measurable, testable, related to in

identified business needs or opportunities, and defined to a level of detail sufficient for

system design.

The SRS functions as a blueprint for completing a project. The SRS is often

referred to as the ”parent” document because all subsequent project management

documents, such as design specifications, statements of work, software architecture

specification, testing and validation plans, and documentation plans, are related to it.

It is important to note that an SRS contains functional and non-functional require-

ments only.

11

TAIPAN CHAPTER 4

Thus the goal of preparing the SRS document is to

• To facilitate communication between the customer, analyst, system develop-

ers,maintainers.

• To serve as a contrast between purchaser and supplier.

• To firm foundation for the design phase.

• Support system testing facilities.

• Support project management and control.

• Controlling the evolution of the system.

4.2 FUNCTIONAL REQUIREMENTS

Functional Requirement defines a function of a software system and how the system

must behave when presented with specific inputs or conditions. These may include

calculations, data manipulation and processing and other specific functionality. In

this system following are the functional requirements:-

• Input test case must not have compilation and runtime errors.

• The application must not stop working when kept running for even a long time.

• The application must function as expected for every set of test cases provided.

• The application should generate the output for given input test case and input

parameters.

• The application should generate on-demand services.

4.3 NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements are the requirements which are not directly concerned

with the specific function delivered by the system. They specify the criteria that

can be used to judge the operation of a system rather than specific behaviors. They

may relate to emergent system properties such as reliability, response time and store

occupancy. Non-functional requirements arise through the user needs, because of

budget constraints, organizational policies, the need for interoperability with other

software and hardware systems or because of external factors such as:-

• Product Requirements

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 12

TAIPAN CHAPTER 4

• Organizational Requirements

• User Requirements

• Basic Operational Requirements

In systems engineering and requirements engineering, a non-functional requirement

is a requirement that specifies criteria that can be used to judge the operation of a

system, rather than specific behaviours. This should be contrasted with functional

requirements that define specific behaviour or functions. The plan for implementing

non-functional requirements is detailed in the system architecture. Broadly, functional

requirements define what a system is supposed to do and non- functional requirements

define how a system is supposed to be. Functional requirements are usually in the

form of system shall do requirement, an individual action of part of the system,

perhaps explicitly in the sense of a mathematical function, a black box description

input, output, process and control functional model or IPO Model. In contrast, non-

functional requirements are in the form of system shall be requirement, an overall

property of the system as a whole or of a particular aspect and not a specific function.

The systems’ overall properties commonly mark the difference between whether the

development project has succeeded or failed.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 13

TAIPAN CHAPTER 4

Non-functional requirements of our project include:

• Response time The time the system takes to load and the time for responses

on any action the user does.

• Processing time - How long is acceptable to perform key functions or export /

import data?

• Throughput The number of transactions the system needs to handle must be

kept in mind.

• Storage - The amount of data to be stored for the system to function.

• Growth Requirements As the system grows it will need more storage space to

keep up with the efficiency.

• Locations of operation - Geographic location, connection requirements and the

restrictions of a local network prevail.

• Architectural Standards The standards needed for the system to work and

sustain.

4.4 HARDWARE REQUIREMENTS

• At least 128MB of RAM (preferably physical) available. Larger data captures

require more RAM than this minimum.

• At least 75MB of disk space available. Again, larger capture files will require

more hard drive space than this.

• At least a 800x600 monitor resolution with 16-bit color. Needed to display

Wireshark properly.

• A supported NIC and network card driver installed.

4.5 SOFTWARE REQUIREMENTS

• Operating System : Windows 10 and Ubuntu.

• Coding Language : C++ / Python.

• Library : XMLtodict.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 14

TAIPAN CHAPTER 4

4.6 SOFTWARE QUALITY ATTRIBUTES

• Functionality: the capability of the software to provide functions which meet

stated and implied needs when the software is used under specified conditions.

• Reliability: the capability of the software to maintain its level of performance

when used under specified conditions.

• Usability: the capability of the software to be understood, learned, used and

liked by the user, when used under specified conditions.

• Efficiency: the capability of the software to provide the required performance,

relative to the amount of resources used, under stated conditions.

• Maintainability: the capability of the software to be modified. Modifications

may include corrections, improvements or adaptation of the software to changes

in environment, and in requirements and functional specifications.

• Portability: the capability of software to be transferred from one environment

to another.

Figure 4.1: Software Quality Attributes

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 15

Chapter 5

SYSTEM DESIGN

5.1 INTRODUCTION

Design is a meaningful engineering representation of something that is to be built.

It is the most crucial phase in the developments of a system. Software design is a

process through which the requirements are translated into a representation of soft-

ware. Design is a place where design is fostered in software Engineering. Based on the

user requirements and the detailed analysis of the existing system, the new system

must be designed. This is the phase of system designing. Design is the perfect way

to accurately translate a customers requirement in the finished software product. De-

sign creates a representation or model, provides details about software data structure,

architecture, interfaces and components that are necessary to implement a system.

The logical system design arrived at as a result of systems analysis is converted into

physical system design.

5.2 SYSTEM DEVELOPMENT

METHODOLOGY

System development method is a process through which a product will get completed

or a product gets rid from any problem. Software development process is described as

a number of phases, procedures and steps that gives the complete software. It follows

series of steps which is used for product progress. The development method followed

in this project is waterfall model.

16

TAIPAN CHAPTER 5

5.2.1 MODEL PHASES

The waterfall model is a sequential software development process, in which progress

is seen as flowing steadily downwards (like a waterfall) through the phases of Require-

ment initiation, Analysis, Design, Implementation, Testing and maintenance.

• Requirement Analysis: This phase is concerned about collection of require-

ment of the system. This process involves generating document and requirement

review.

• System Design: Keeping the requirements in mind the system specifications

are translated in to a software representation. In this phase the designer em-

phasizes on:-algorithm, data structure, software architecture etc.

• Coding: In this phase programmer starts his coding in order to give a full

sketch of product. In other words system specifications are only converted in to

machine readable compute code.

• Implementation: The implementation phase involves the actual coding or

programming of the software. The output of this phase is typically the library,

executables, user manuals and additional software documentation

• Testing: In this phase all programs (models) are integrated and tested to en-

sure that the complete system meets the software requirements. The testing is

concerned with verification and validation.

• Maintenance: The maintenance phase is the longest phase in which the soft-

ware is updated to fulfill the changing customer need, adapt to accommodate

change in the external environment, correct errors and oversights previously

undetected in the testing phase, enhance the efficiency of the software.

5.2.2 REASON FOR CHOOSING WATERFALL MODEL

AS DEVELOPMENT METHOD

• Clear project objectives.

• Stable project requirements.

• Progress of system is measurable.

• Strict sign-off requirements.

• Helps you to be perfect.

• Logic of software development is clearly understood.
DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 17

TAIPAN CHAPTER 5

• Production of a formal specification

• Better resource allocation.

• Improves quality. The emphasis on requirements and design before writing a

single line of code ensures minimal wastage of time and effort and reduces the

risk of schedule slippage.

• Less human resources required as once one phase is finished those people can

start working on to the next phase.

Figure 5.1: Waterfall Model

5.3 DESIGN USING UML

Designing UML diagram specifies, how the process within the system communicates

along with how the objects with in the process collaborate using both static as well as

dynamic UML diagrams since in this ever-changing world of Object Oriented applica-

tion development, it has been getting harder and harder to develop and manage high

quality applications in reasonable amount of time. As a result of this challenge and

the need for a universal object modeling language every one could use, the Unified

Modeling Language (UML) is the Information industries version of blue print. It is a

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 18

TAIPAN CHAPTER 5

Table 5.1: Symbols used in UML

method for describing the systems architecture in detail. Easier to build or maintains

system, and to ensure that the system will hold up to the requirement changes.

5.4 DATA FLOW DIAGRAM

A data flow diagram (DFD) is graphic representation of the ”flow” of data through an

information system. A data flow diagram can also be used for the visualization of data

processing (structured design). It is common practice for a designer to draw a context-

level DFD first which shows the interaction between the system and outside entities.

DFDs show the flow of data from external entities into the system, how the data

moves from one process to another, as well as its logical storage. There are only four

symbols: 1. Squares representing external entities, which are sources and destinations

of information entering and leaving the system. 2. Rounded rectangles representing

processes, in other methodologies, may be called ’Activities’, ’Actions’, ’Procedures’,

’Subsystems’ etc. which take data as input, do processing to it, and output it. 3.

Arrows representing the data flows, which can either, be electronic data or physical

items. It is impossible for data to flow from data store to data store except via a

process, and external entities are not allowed to access data stores directly. 4. The

flat three-sided rectangle is representing data stores should both receive information

for storing and provide it for further processing.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 19

TAIPAN CHAPTER 5

5.5 CLASS DIAGRAM

UML class diagram shows the static structure of the model. The class diagram is a col-

lection of static modeling elements, such as classes and their relationships, connected

as a graph to each other and to their contents. The class diagram is the main building

block of object oriented modeling. It is used both for general conceptual modeling of

the systematic of the application, and for detailed modeling translating the models

into programming code. Class diagrams can also be used for data modeling. The

classes in a class diagram represent both the main objects and or interactions in the

application and the objects to be programmed.

Figure 5.2: Class Diagram

5.6 USE CASE DIAGRAM

A use case defines a goal-oriented set of interactions between external entities and the

system under consideration. The external entities which interact with the system are

its actors. A set of use cases describe the complete functionality of the system at a

particular level of detail and it can be graphically denoted by the use case diagram.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 20

TAIPAN CHAPTER 5

Figure 5.3: Use Case Diagram

5.7 ACTIVITY DIAGRAM

An activity diagram shows the sequence of steps that make up a complex process. An

activity is shown as a round box containing the name of the operation. An outgoing

solid arrow attached to the end of the activity symbol indicates a transition triggered

by the completion.

Activity diagram is another important diagram in UML to describe the dynamic

aspects of the system. Activity diagram is basically a flowchart to represent the flow

from one activity to another activity. The activity can be described as an operation

of the system. The control flow is drawn from one operation to another.

Activity is a particular operation of the system. Activity diagrams are not only used

for visualizing the dynamic nature of a system, but they are also used to construct

the executable system by using forward and reverse engineering techniques. The only

missing thing in the activity diagram is the message part.

It does not show any message flow from one activity to another. Activity diagram is

sometimes considered as the flowchart. Although the diagrams look like a flowchart,

they are not. It shows different flows such as parallel, branched, concurrent, and

single.

5.8 SEQUENCE DIAGRAM

Sequence diagram are an easy and intuitive way of describing the behavior of a system

by viewing the interaction between the system and the environment. A sequence

diagram shows an interaction arranged in a time sequence. A sequence diagram

has two dimensions: vertical dimension represents time, the horizontal dimension

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 21

TAIPAN CHAPTER 5

Figure 5.4: Activity Diagram

represents the objects existence during the interaction. Basic elements:

• Vertical rectangle: Represent the object is active (method is being per-

formed).

• Vertical dashed line: Represent the life of the object.

• X: represent the life end of an object. (Being destroyed from memory)

• Horizontal line with arrows: Messages from one object to another.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 22

TAIPAN CHAPTER 5

Figure 5.5: Sequence Diagram

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 23

Chapter 6

IMPLEMENTATION

6.1 INTRODUCTION

The implementation phase of the project is where the detailed design is actually

transformed into working code. Aim of the phase is to translate the design into a

best possible solution in a suitable programming language. This chapter covers the

implementation aspects of the project, giving details of the programming language

and development environment used. It also gives an overview of the core modules

of the project with their step by step flow. The implementation stage requires the

following tasks:

• Careful planning.

• Investigation of system and constraints.

• Design of methods to achieve the changeover.

• Evaluation of the changeover method.

• Correct decisions regarding selection of the platform.

• Appropriate selection of the language for application development.

6.2 Generating Binary File

#include <s t d i o . h>

struct d a t e e n t r y r e c o r d t y p e

{
unsigned int day : 3 ;

unsigned int date : 5 ;

unsigned int month : 4 ;
24

TAIPAN CHAPTER 6

unsigned int year : 12 ;

} a t t r i b u t e ((packed)) ;

int day [] = {0 , 1 , 2 , 3 , 4 , 5 , 6} ;

int date [] = {10 , 11 , 12 , 13 , 14 , 15 , 16} ;

int month [] = {1 , 2 , 3 , 4 , 5 , 6 , 7} ;

int year [] = {1970 , 1971 , 1972 , 1973 , 1974 , 1975 , 1976} ;

main ()

{
FILE ∗ fp ;

int i ;

struct d a t e e n t r y r e c o r d t y p e date ent ry ;

fp = fopen (” data . bin ” , ”wb”) ;

p r i n t f (” s i z e : %d\n” , s izeof (date ent ry)) ;

for (i = 0 ; i < 7 ; i++)

{
date ent ry . day = day [i] ;

da t e ent ry . date = date [i] ;

da t e ent ry . month = month [i] ;

da t e ent ry . year = year [i] ;

f w r i t e (&date entry , s izeof (date ent ry) , 1 , fp) ;

}
f c l o s e (fp) ;

}

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 25

TAIPAN CHAPTER 6

6.3 Display

from b i t a r r a y import b i t a r r a y

import xml read

import mmap

import t o o l

import convert

class MyException (Exception) :

pass

with open (’ data . bin ’ , ’ rb ’) as bfd :

m = mmap.mmap (bfd . f i l e n o () , 0 , access=mmap.ACCESS READ)

by = bytearray (m)

print (’ opened data . bin f o r par s ing o f data . ’) ;

#to d i s p l a y the a c t ua l in format ion

def value () :

l=0

ba = b i t a r r a y (endian=’ l i t t l e ’)

ba . frombytes (str (by))

xml read . main ()

typ = xml read . k i n d o f t y p e

s i z = xml read . t y p e s i z e

mini = xml read . min l im i t

maxi = xml read . max l imit

s i z e a r r = xml read . s i z e a r r

t y p e s o f t y p e = xml read . t y p e s o f t y p e

s i z o s t r u c t = xml read . s t r u c t s i z e

try :

while l < len (ba) :

try :

i f s i z [’DAY ENUMERATED TYPE’] <= 8 :

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 26

TAIPAN CHAPTER 6

day = convert . by t e conve r s i on (b=ba [l : l+s i z e a r r

[0]] , s i gn = t o o l . a s s i g n s i g n (t y p e s o f t y p e

[0]))

else :

day = convert . i n t c o n v e r s i o n (b=ba [l : l+s i z e a r r

[0]] , e=’ l i t t l e ’ , s i gn = t o o l . a s s i g n s i g n (

t y p e s o f t y p e [0]))

i f s i z [’DATE TYPE ’] <= 8 :

date = convert . by t e conve r s i on (b=ba [l+s i z e a r r

[0] : l+s i z e a r r [1]] , s i gn = t o o l . a s s i g n s i g n (

t y p e s o f t y p e [1]))

else :

date = convert . i n t c o n v e r s i o n (b=ba [l+s i z e a r r [0] :

l+s i z e a r r [1]] , e=’ l i t t l e ’ , s i gn = t o o l .

a s s i g n s i g n (t y p e s o f t y p e [1]))

i f s i z [’MONTH TYPE’] <= 8 :

month = convert . by t e conve r s i on (b=ba [l+s i z e a r r

[1] : l+s i z e a r r [2]] , s i gn = t o o l . a s s i g n s i g n (

t y p e s o f t y p e [2]))

else :

month = convert . i n t c o n v e r s i o n (b=ba [l+s i z e a r r

[1] : l+s i z e a r r [2]] , e=’ l i t t l e ’ , s i gn = t o o l .

a s s i g n s i g n (t y p e s o f t y p e [2]))

i f s i z [’YEAR TYPE ’] <= 8 :

year = convert . by t e conve r s i on (b=ba [l+s i z e a r r

[2] : l+s i z e a r r [3]] , s i gn = t o o l . a s s i g n s i g n (

t y p e s o f t y p e [3]))

else :

year = convert . i n t c o n v e r s i o n (b=ba [l+s i z e a r r [2] :

l+s i z e a r r [3]] , e=’ l i t t l e ’ , s i gn = t o o l .

a s s i g n s i g n (t y p e s o f t y p e [3]))

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 27

TAIPAN CHAPTER 6

i f date < int (mini [’DATE TYPE ’]) or month < int (mini

[’MONTH TYPE’]) :

raise MyException

f ina l ly :

print (day , date , month , year)

l=l+s i z o s t r u c t

except MyException :

print (” I n v a l i d Input ”)

def main () :

va lue ()

i f name ==’ ma in ’ :

main ()

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 28

TAIPAN CHAPTER 6

6.4 Reading XML File

import xmltod ict

k i n d o f t y p e = {}
t y p e s i z e = {}
min l im i t = {}
max l imit = {}
s i z e a r r = []

t y p e s o f t y p e = []

s t r u c t s i z e = 0

with open (’ metadata . xml ’) as mfd :

meta data = xmltod ict . parse (mfd . read ())

print (’ us ing metada . xml as data d e f i n a t i o n . ’) ;

def main type query (main type name) :

ma in type d i c t = None

i f len (meta data [’msg ’] [’ main type ’]) > 1 :

for main type e lement in meta data [’msg ’] [’ main type ’] :

i f main type e lement [’name ’] == main type name :

ma in type d i c t = main type e lement

break

else :

i f meta data [’msg ’] [’ main type ’] [’name ’] ==

main type name :

ma in type d i c t = meta data [’msg ’] [’ main type ’]

return main type d i c t

def type query (type name) :

t y p e d i c t = None

i f len (meta data [’msg ’] [’ type ’]) > 1 :

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 29

TAIPAN CHAPTER 6

for type e lement in meta data [’msg ’] [’ type ’] :

i f type e lement [’name ’] == type name :

t y p e d i c t = type e lement

break

else :

i f meta data [’msg ’] [’ type ’] [’name ’] == type name :

t y p e d i c t = meta data [’msg ’] [’ type ’]

return t y p e d i c t

def r e co rd r ead (r e c o r d d i c t) :

global s i z e a r r

global t y p e s o f t y p e

global s t r u c t s i z e

s t r u c t s i z e = int (r e c o r d d i c t [’ s i z e ’])

for f i e l d d i c t in r e c o r d d i c t [’ r ecord ’] [’ f i e l d ’] :

f i e l d t y p e = type query (f i e l d d i c t [’ type name ’])

i f f i e l d t y p e == None :

print (’ could not get d e f i n a t i o n o f ’ +

f i e l d d i c t [’ type name ’] + ’ . . . e x i s t i n g ’)

qu i t ()

else :

#pr in t (’ . . . read ’ + f i e l d t y p e [’ s i z e ’] + ’ b i t s

from bu f f e r f o r ’ + f i e l d t y p e [’ name ’])

t y p e s i z e [f i e l d t y p e [’name ’]]= int (f i e l d t y p e [’ s i z e ’

])

k i n d o f t y p e [f i e l d t y p e [’name ’]]= f i e l d t y p e [’

k i n d o f t y p e ’]

for types in k i n d o f t y p e . va lue s () :

i f types == ’ i n t e g e r ’ :

m in l im i t [f i e l d t y p e [’name ’]]= f i e l d t y p e [’

i n t e g e r ’] [’ range ’] [’ min ’] [’ e xp r e s s i on ’]

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 30

TAIPAN CHAPTER 6

max l imit [f i e l d t y p e [’name ’]]= f i e l d t y p e [’

i n t e g e r ’] [’ range ’] [’max ’] [’ e xp r e s s i on ’]

s i z e a r r=t y p e s i z e . va lue s ()

temp=0

for i in range (len (s i z e a r r)) :

s i z e a r r [i] = temp + s i z e a r r [i]

temp = s i z e a r r [i]

t y p e s o f t y p e=k i n d o f t y p e . keys ()

def main () :

main type name = ’DATE RECORD TYPE’

main type = type query (main type name)

i f main type == None :

print (’ could not get d e f i n a t i o n o f ’ +

main type name + ’ . . . e x i s t i n g ’)

qu i t ()

else :

r e co rd r ead (main type)

i f name == ’ ma in ’ :

main ()

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 31

TAIPAN CHAPTER 6

6.5 Convert

import unpac

#to conver t by t e type va l u e s

def byte conve r s i on (b , s i gn) :

r e s = None

b i t l e n=len (b)

i f b i t l e n > 0 :

i f b i t l e n <= 8 and s i gn == ’ unsigned ’ :

r e s = unpac . u i n t 8 v a l (b i t s=b)

e l i f b i t l e n == 8 and s i gn == ’ s igned ’ :

r e s = unpac . i n t 8 v a l (b i t s=b)

else :

print (’ I n v a l i d l ength %d ’ % b i t l e n)

return r e s

#to conver t i n t type va l u e s

def i n t c o n v e r s i o n (b , e , s i gn) :

r e s = None

b i t l e n=len (b)

i f b i t l e n > 0 :

i f b i t l e n <= 16 and s i gn == ’ unsigned ’ :

r e s = unpac . u i n t 1 6 v a l (b i t s=b , endian=e)

e l i f b i t l e n == 16 and s i gn == ’ s igned ’ :

r e s = unpac . i n t 1 6 v a l (b i t s=b , endian=e)

e l i f b i t l e n <= 32 and s i gn == ’ unsigned ’ :

r e s = unpac . u i n t 3 2 v a l (b i t s=b , endian=e)

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 32

TAIPAN CHAPTER 6

e l i f b i t l e n == 32 and s i gn == ’ s igned ’ :

r e s = unpac . i n t 3 2 v a l (b i t s=b , endian=e)

e l i f b i t l e n <= 64 and s i gn == ’ unsigned ’ :

r e s = unpac . u i n t 6 4 v a l (b i t s=b , endian=e)

e l i f b i t l e n == 64 and s i gn == ’ s igned ’ :

r e s = unpac . i n t 6 4 v a l (b i t s=b , endian=e)

else :

print (’ I n v a l i d l ength %d ’ % b i t l e n)

return r e s

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 33

TAIPAN CHAPTER 6

6.6 Show

import Tkinter

import p r o j e c t 1

o p t i o n l i s t = {}

class s impleapp tk (Tkinter . Tk) :

def i n i t (s e l f , parent) :

Tkinter . Tk . i n i t (s e l f , parent)

s e l f . parent = parent

s e l f . i n i t i a l i z e ()

def i n i t i a l i z e (s e l f) :

s e l f . g r i d ()

l im = len (p r o j e c t 1 . s t r i n)

for i in range (l im) :

o p t i o n l i s t [” Block ”+”%d”%(i +1)] = p r o j e c t 1 . s t r i n [i]

s e l f . dropVar = Tkinter . Str ingVar ()

s e l f . dropVar . set (”Choose”)

s e l f . dropmenu1 = Tkinter . OptionMenu (s e l f , s e l f . dropVar

,∗ o p t i o n l i s t , command=s e l f . C l i ck)

s e l f . dropmenu1 . g r i d (column=0, row=0)

s e l f . l a b e l V a r i a b l e = Tkinter . Str ingVar ()

l a b e l = Tkinter . Label (s e l f , t e x t v a r i a b l e=s e l f .

l abe lVar i ab l e , anchor=”nw” , f g=”#abccba” , bg=” blue ”)

l a b e l . g r i d (column=1,row=0,rowspan=lim , s t i c k y=’EWNS’)

s e l f . g r id co lumncon f i gur e (0 , weight=0)

s e l f . g r id co lumncon f i gur e (1 , weight=1)

for i in range (l im) :

s e l f . g r i d r o w c o n f i g u r e (i , weight=0)

s e l f . r e s i z a b l e (True , True)

s e l f . update ()

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 34

TAIPAN CHAPTER 6

s e l f . geometry (’ 500 x500 ’)

t ex t = ””

for temp in p r o j e c t 1 . s t r i n :

t ex t = text + temp + ”\n”

s e l f . l a b e l V a r i a b l e . set (t ex t)

def Cl ick (s e l f , va lue) :

s e l f . l a b e l V a r i a b l e . set (o p t i o n l i s t [va lue])

i f name == ” main ” :

p r o j e c t 1 . main ()

app = simpleapp tk (None)

app . t i t l e (’my a p p l i c a t i o n ’)

app . mainloop ()

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 35

Chapter 7

TESTING AND RESULTS

7.1 INTRODUCTION

Testing is an important phase in the development life cycle of the product this was

the phase where the error remaining from all the phases was detected. Hence testing

performs a very critical role for quality assurance and ensuring the reliability of the

software. Once the implementation is done, a test plan should be developed and run

on a given set of test data. Each test has a different purpose, all work to verify that all

the system elements have been properly integrated and perform allocated functions.

The testing process is actually carried out to make sure that the product exactly does

the same thing what is suppose to do. Testing is the final verification and validation

activity within the organization itself. In the testing stage following goals are tried to

achieve:-

• To affirm the quality of the project.

• To find and eliminate any residual errors from previous stages.

• To validate the software as the solution to the original problem.

• To provide operational reliability of the system.

During testing the major activities are concentrated on the examination and modifi-

cation of the source code. The test cases executed for this project are listed below.

Description of the test case, steps to be followed; expected result, status and screen-

shots are explained with each of the test cases.

7.2 TESTING METHODOLOGIES

There are many different types of testing methods or techniques used as part of the

software testing methodology. Some of the important types of testing are:
36

TAIPAN CHAPTER 7

7.2.1 WHITE BOX TESTING

White Box Testing is a testing in which in which the software tester has knowledge

of the inner workings, structure and language of the software, or at least its purpose.

It is purpose. It is used to test areas that cannot be reached from a black box level.

Using white box testing we can derive test cases that:

• Guarantee that all independent paths within a module have been exercised at

least once.

• Exercise all logical decisions on their true and false sides.

• Execute all loops at their boundaries and within their operational bounds.

• Execute internal data structure to assure their validity.

7.2.2 BLACK BOX TESTING

Black Box Testing is testing the software without any knowledge of the inner workings,

structure or language of the module being tested. Black box tests, as most other kinds

of tests, must be written from a definitive source document, such as specification or

requirements document, such as specification or requirements document. It is a testing

in which the software under test is treated, as a black box .you cannot see into it. The

test provides inputs and responds to outputs without considering how the software

works. It uncovers a different class of errors in the following categories:

• Incorrect or missing function.

• Interface errors.

• Performance errors.

• Initialization and termination errors.

• Errors in objects.

Advantages:

• The test is unbiased as the designer and the tester are independent of each other.

• The tester does not need knowledge of any specific programming languages.

• The test is done from the point of view of the user, not the designer.

• Test cases can be designed as soon as the specifications are complete.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 37

TAIPAN CHAPTER 7

Test Case ID

Purpose

Preconditions

Inputs

Expected Outputs

Postconditions

Table 7.1: Unit Test Cases

7.2.3 UNIT TESTING

Unit testing is usually conducted as part of a combined code and unit test phase of

the software lifecycle, although it is not uncommon for coding and unit testing to be

conducted as two distinct phases. Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.

Test objectives:

• All Components must work properly.

• Proper coordinates should be sent by the Android app to the Arduino

• The entry screen, messages and responses must not be delayed in the Android

app.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 38

TAIPAN CHAPTER 7

7.3 RESULTS

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 39

TAIPAN CHAPTER 7

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 40

Chapter 8

CONCLUSION & FUTURE

SCOPE

41

TAIPAN CHAPTER 8

8.1 CONCLUSION

This project was the first attempt to develop a system of this nature. We identified

from the beginning that producing a complete result would be impossible within

the given time frame. We viewed the project as a journey where we learnt many

lessons and gained insights to the subject which we tried to share in this report and

summarised in this chapter. We tried to look at the problem from many points of

view which generated some new ideas that could be explored in future. We suggested

formal approaches for modelling and analysing the system which are by no means

complete but could become the initiation for further research. We also created a

working system and algorithms which we claim to be useful and extensible. However,

as we have seen in these chapter, all these achievements are only partialy successful.

Personally, we would consider this project a success if the ideas described in the

report can be a useful reference for future work on the subject.

8.2 FUTURE SCOPE

This project was the first implementation of a system of this nature. We identify

that the work done both in terms of analysing and implementing the system is by no

means complete. In this section we list the things that were either left open by this

project or were opened by the analysis performed and the lessons learned during our

interaction with the subject.

8.3 BUILD A COMPLETE SYSTEM

We will give special focus to an idea generated by this project and we believe it to be

a very interesting proposal.

We can magnify the overall model which will in turn nullify the precision of the data.

Which also means that the data determination becomes comparatively dense.

We now give a brief overview of the rest of the future issues.

8.4 FUTURE WORK

Taipan as a Network Protocol Analyzer has already proven its mettle in all necessary

realms. However it still has scope of improvement in it as far as alert generation and

heuristic development is concerned. We are working to introduce certain utilities in

the source code of Wireshark to overcome the above shortcomings by making Taipan

capable of alert generations.

DEPARTMENT Of CSE , CMRIT , BENGALURU - 560037 42

References

[1] S. rao and S. rao, ”Denial of Service attacks and mitigation techniques: Real

time implementation with detailed analysis”, 2011.

[2] M. Salagean, ”Anomaly detection of network traffic based on Analytical Discrete

Wavelet Transform”, 2010

[3] U. Banerjee, A. Vashishtha and M. Saxena, ”Evaluation of the Capabilities of

WireShark as a tool for Intrusion Detection”, International Journal of Computer

Applications, vol. 6

[4] http://sharkfest.wireshark.org/sharkfest.11/

[5] http://www.wireshark.org/docs/wsug_html_chunked/

[6] http://www.wireshark.org/docs/wsug_html_chunked/

ChapterIntroduction.html#ChIntroFig1

[7] http://www.cacetech.com/resources.html

[8] http://www.riverbed.com/us/products/cascade/airpcap.php

[9] http://www.wireshark.org/faq.html#q7.1

[10] Waqar Ali, Jun Sang, Hamad Naeem, Rashid Naeem, Ali Raza, (2015),Wireshark

window authentication based packet captureing scheme to pervent DDoS related

security issues in cloud network nodes,ResearchPaper

43

http://sharkfest.wireshark.org/sharkfest.11/
http://www.wireshark.org/docs/wsug_html_chunked/
http://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroFig1
http://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroFig1
http://www.cacetech.com/resources.html
http://www.riverbed.com/us/products/cascade/airpcap.php
http://www.wireshark.org/faq.html#q7.1

Chapter 9

APPENDIX

44

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	PREAMBLE
	Introduction
	Problem Statement
	Existing System
	What Wireshark is Not
	Some Intended Purpose
	Features
	Proposed System

	LITERATURE SURVEY
	INTRODUCTION
	LITERATURE SURVEY
	PAPER 1
	PAPER 2
	PAPER 3
	PAPER 4

	THEORETICAL BACKGROUND
	INTRODUCTION
	XMLTODICT
	BYTEARRAY
	STRUCT.UNPACK()

	SYSTEM REQUIREMENT SPECIFICATION
	INTRODUCTION
	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS
	HARDWARE REQUIREMENTS
	SOFTWARE REQUIREMENTS
	SOFTWARE QUALITY ATTRIBUTES

	SYSTEM DESIGN
	INTRODUCTION
	SYSTEM DEVELOPMENT METHODOLOGY
	DESIGN USING UML
	DATA FLOW DIAGRAM
	CLASS DIAGRAM
	USE CASE DIAGRAM
	ACTIVITY DIAGRAM
	SEQUENCE DIAGRAM

	IMPLEMENTATION
	INTRODUCTION
	Generating Binary File
	Display
	Reading XML File
	Convert
	Show

	TESTING AND RESULTS
	INTRODUCTION
	TESTING METHODOLOGIES
	RESULTS

	CONCLUSION & FUTURE SCOPE
	CONCLUSION
	FUTURE SCOPE
	BUILD A COMPLETE SYSTEM
	FUTURE WORK

	References
	APPENDIX

