| GBCOISEHENE
uss) €l |a] e[Alo & 18MCA13

First Semester MCA Degree Examination;)Dec.2019/Jan.2020
Web Technologi

Time: 3 hrs. o Max. Marks: 100
Note: Answer any FIVE full questions, choos INE full question from each module.
L
- : ¢
£ 1 a Whatare the two phases of HTTP? Expldin each of them in detail (10 Marks)
g b. Explain the following : i) Domai ii) URL. . (10 Marks)
: Ve
'}3 2 a. Withan examples, explain tags. (06 Marks)
2 b. Write a HTML program () ribe a table wi rows, cols, rowspan and colspan
i3 attributes. % ' (08 Marks)
g£= ¢. Explain the fouowin@ ith an example each &) Sinput> ii) <select> iii) <textarea>.
E ; %, 4 (06 Marks)
P : o Mod
£ 3 a. Explainthe . section, article, aside, footer. (10 Marks)
E 3 b. Explain res of HTMLS. ™ (10 Marks)
45 e OR ~
g5 4 a. Explaindifferent selector fo S. 4 (10 Marks
2 g b. Write a XHTML and CSS doc tto illustrate di font properties.
| g k| £ od b o E
ks g‘ 5 a How arrays can be cng'%' ja.vascnp_l'l E:xpla?‘ array methods with exm\:\)
5 b. How functions are dec in javascript? m:)m Javascript program to calcula
&0 2 : '

an array. e \
A)
§

Write a javaséjp:%rogmm o Sh(tﬁmg events from textbox and passy

hu}@ﬁz Event Model, Q Cjb’

laif ys of ioning elements i Dynamic Documents with

aplement stacking @emems.
/ ‘OR

44
with XSLT form explain.

Explain differe;
Explain the fo_\b
size(), get(), 1
C -
How attr() commands can be us
Explain the following commands

Importa

10

T

Q1 a) What are the two phases of HTTP? Explain each of them in detail.

Request Phase:

The general form of an HTTP request is as follows:

1. HTTP method Domain part of the URL HTTP version

2. Header fields

3. Blank line

4. Message body

The following is an example of the first line of an HTTP request:

GET /storefront.htm| HTTP/1.1

The format of a header field is the field name followed by a colon and the value of the field.
There are four categories of header fields:

1. General: For general information, such as the date

2. Request: Included in request headers

3. Response: For response headers

4. Entity: Used in both request and response headers

A wildcard character, the asterisk (*), can be used to specify that part of a MIME type can be
anything.

The Host: host name request field gives the name of the host. The Host field is required for
HTTP 1.1. The If-Modified-Since: date request field specifies that the requested file should be
sent only if it has been modified since the given date. If the request has a body, the length of
that body must be given with a Content-length field. The header of a request must be followed

by a blank line, which is used to separate the header from the body of the request.

The Response Phase:

The general form of an HTTP response is as follows:
1. Status line

2. Response header fields

3. Blank line

4. Response body

The status line includes the HTTP version used, a three-digit status code for the response, and a
short textual explanation of the status code.

For example, most responses begin with the following:

HTTP/1.1 200 OK

The status codes begin with 1, 2, 3, 4, or 5. The general meanings of the five categories

specified by these first digits are shown in Table 1.2.

Table 1.2 First digits of HTTP status codes
First Digit l Category
Informational
2 ; Success
3 Redirection
4 [Client error

Server error

One of the more common status codes is one user never want to see: 404 Not Found, which

means the requested file could not be found.

Q1b) Explain the following i)Domain name ii)URL

Domain Names
The IP addresses are numbers. Hence, it would be difficult for the users to remember IP
address. To solve this problem, text based names were introduced. These are technically known
as domain name system (DNS).
These names begin with the names of the host machine, followed by progressively larger
enclosing collection of machines, called domains. There may be two, three or more domain
names. DNS is of the form hostname.domainName.domainName.
Example: www.amazon.in
The steps for conversion from DNS to IP:
e The DNS has to be converted to IP address before destination is reached.
e This conversion is needed because computer understands only numbers.
e The conversion is done with the help of name server.
e Assoon as domain name is provided, it will be sent across the internet to contact name
servers.
e This name server is responsible for converting domain name to IP
e |f one of the name servers is not able to convert DNS to IP, it contacts other name
server.
e This process continues until IP address is generated.
e Once the IP address is generated, the host can be accessed.
e The hostname and all domain names form what is known as FULLY QUALIFIED DOMAIN
NAME.
e Thisis as shown below:

Fgure 1.1 Domain name conversion

UNIFORM RESOURCE LOCATORS

Uniform Resource Locators (URLs) are used to identify different kinds of resources on
Internet.

If the web browser wants some document from web server, just giving domain name is
not sufficient because domain name can only be used for locating the server.

It does not have information about which document client needs. Therefore, URL should
be provided.

The general format of URL is: scheme: object-address

Example: http: www.vtu.ac.in/results.php

The scheme indicates protocols being used. (http, ftp, telnet...)

In case of http, the full form of the object address of a URL is as follows:

//fully-qualified-domain-name/path-to-document

URLs can never have embedded spaces

It cannot use special characters like semicolons, ampersands and colons

The path to the document for http protocol is a sequence of directory names and a
filename, all separated by whatever special character the OS uses. (Forward or
backward slashes)

The path in a URL can differ from a path to a file because a URL need not include all
directories on the path

A path that includes all directories along the way is called a complete path.
Example: http://www.gumboco.com/files/f99/storefront.html

In most cases, the path to the document is relative to some base path that is specified in
the configuration files of the server. Such paths are called partial paths.

Example: http://www.gumboco.com/storefront.html

Q2a) With an example explain list tags

1) Unordered List
The tag, which is a block tag, creates an unordered list. Each item in a list is

specified with an tag (li is an acronym for list item). Any tags can appear in a list

item, including nested lists. When displayed, each list item is implicitly preceded by a

bullet

<?xml version = "1.0" encoding = “utf-g"?>
<!DOCTYPE html PUBLIC "~//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<!== unordered.html
An example to illustrate an unordered list
-
<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title> Unordered list </title>
</head>
<body>
<h3> Some Common Single-Engine Aircraft </h3>

<1li> Cessna Skyhawk
<1li> Beechcraft Bonanza </1li>
 Piper Cherokee </1i>

</body>
</html>

2) Ordered List
Ordered lists are lists in which the order of items is important. This ordered-ness of a
list is shown in the display of the list by the implicit attachment of a sequential value
to the beginning of each item. The default sequential values are Arabic numerals,
beginning with 1.
An ordered list is created within the block tag . The items are specified and
displayed just as are those in unordered lists, except that the items in an ordered list
are preceded by sequential values instead of bullets.

<?xml version = "1.0" encoding = "utf-g"2>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

“http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">
<!-- ordered.html

An example to illustrate an ordered list

-

<html xmlns = “"http://www.w3.0rg/1999/xhtml">
<head> <title> Ordered list </title>
</head>
<body>
<h3> Cessna 210 Engine Starting Instructions </h3>

<1li> Set mixture to rich
 Set propeller to high RPM
<1li> Set ignition switch to "BOTH" </1li>
<1li> Set auxiliary fuel pump switch to "LOW PRIME" </1li>
<1i> when fuel pressure reaches 2 to 2.5 PSI, push
starter button
</1li>
</0l>
</body>
</html>

3) Definition List

As the name implies, definition lists are used to specify lists of terms and their
definitions, as in glossaries. A definition list is given as the content of a <dI> tag, which is
a block tag. Each term to be defined in the definition list is given as the content of a
<dt>tag. The definitions themselves are specified as the content of <dd> tags. The
defined terms of a definition list are usually displayed in the left margin; the definitions
are usually shown indented on the line or lines following the term.

<?xml version = "1.0" encoding = "utf-g"?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN"
“http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<!-- definition.html
An example to illustrate definition lists
-
<html xmlns = "http://www.w3.0rg/1999/xhtml">
<head> <title> Definition lists </title>
</head>
<body>
<h3> Single-Engine Cessna Airplanes </h3>
<dl>
<dt> 152 </dt>
<dd> Two-place trainer </dd>
<dt> 172 </dt>
<dd> Smaller four-place airplane </dd>
<dt> 182 </dt>
<dd> Larger four-place airplane </dd>
<dt> 210 </dt>
<dd> Six-place airplane - high performance </dd>
</dl>
</body>
</html>

Q2b) Write and xhtml program to describe a table with rows. Col, colspan and rowspan attributes

<?xml version = "1.0" encoding = "utf-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml|">
<head>
<title>MCA Department</title>
</head>
<body bgcolor="AliceBlue">

<h3id="3">Time Table</h3>
<table border="1" cellspacing="5" cellpadding="5">
<tr>
<td></td>
<td>8-9</td>
<td>9-10</td>
<td>10-10:30</td>
<td>10.30-11.30</td>
<td>11.30-12:30</td>
<td>12:30-1:30</td>
<td>1:30-2:30</td>
<td>2:30-3:30</td>
<ftr>
<tr>
<td>Day 1</td>
<td>web</td>
<td>unix</td>
<td rowspan="3">Break</td>
<td>dms</td>
<td>co</td>
<td rowspan="3">Break</td>

<td>ds</td>
<td>unix</td>

</tr>

<tr>
<td>Day 2</td>
<td>web</td>
<td>unix</td>
<td>dms</td>
<td>co</td>
<td>ds</td>
<td>unix</td>

</tr>

<tr>
<td>Day 3</td>
<td>web</td>
<td>unix</td>
<td>dms</td>
<td>co</td>
<td colspan="2">Lab</td>

</tr>

</table>
</body>
</html>

Q3a) Explain the tags nav, section, article, aside, footer

1) Nav

The <nav> tag is a new element in HTMLS. It is used to define a block of navigation

links, either within the current document or to other documents. Examples of navigation
blocks are menus, tables of contents, and indexes.

One HTML document may contain several <nav> tags, for example, one for site navigation
and one for intra-page navigation.

Note that not all links in the HTML document can be placed inside the <nav> element; it can
only include major navigation blocks. For example, the <nav> tag is not placed in the
<footer> tag for defining links in the footer of the website.

Example:

<nav>

HTML | CSS | JavaScript | PHP |
</nav>

2) Section

The HTML <section> tag specifies a section in a document.
<IDOCTYPE html>

<html>

<head>

<title>HTML Section Tag</title>

</head>
<body>
<section>
<h1>Java</h1>

<h3>Inheritance</h3>

<p>Inheritance defines the relationship between superclass and subclass.</p>
</section>

</body>

</html>

3) Article

The <article> tag specifies independent, self-contained content.

An article should make sense on its own and it should be possible to distribute it
independently from the rest of the site.

Potential sources for the <article> element:

Forum post

Blog post

News story

Comment

<article>

<h1>Google Chrome</h1>

<p>Google Chrome is a free, open-source web browser developed by Google,
released in 2008.</p>

</article>

4) Aside

The <aside> tag defines some content aside from the content it is placed in.
The aside content should be related to the surrounding content.

<p>My family and | visited The Epcot center this summer.</p>

<aside>

<h4>Epcot Center</h4>

<p>The Epcot Center is a theme park in Disney World, Florida.</p>
</aside>

5) Footer

The <footer> tag defines a footer for a document or section.
A <footer> element should contain information about its containing element.
A <footer> element typically contains:

authorship information

copyright information

contact information

sitemap

back to top links

related documents

You can have several <footer> elements in one document.

Q3 b) Explain the feature of HTML5

HTML 5 adds a lot of new features to the HTML specification, and it is easy it is to implement.
You use the HTML 5 doctype, which is simple and streamlined:

<!doctype html>

HTML 5 is no longer part of SGML but is instead a markup language all on its own.

The character set for HTML 5 is streamlined as well. It uses UTF-8, and you define it with

just one meta tag:

<meta charset="UTF-8">

HTML 5 New Structure

HTML 5 recognizes that webpages have a structure, just like books and other XML
documents have a structure. In general, webpages have navigation, body content, sidebar
content, headers, footers, and other features. HTML 5 has tags to support those elements
of the page. They are:

e <section> defines sections of pages.

e <header> defines the header of a page.

o <footer> defines the footer of a page.

e <nav> defines the navigation on a page.

e <article> defines the article or primary content on a page.
e <aside> defines extra content like a sidebar on a page.

o <figure> defines images that annotate an article.

HTML 5 New Inline Elements
The new inline elements define some basic concepts and keep them semantically marked
up:

e <mark> indicates content that is marked in some fashion.

e <time> indicates content that is a time or date.

e <meter> indicates content that is a fraction of a known range such as disk usage.
e <progress> indicates the progress of a task towards completion.

HTML 5 New Dynamic Pages Support
HTML 5 was developed to help web application developers, so there are a lot of new

features that make it easy to create dynamic HTML pages:

e Context menus — HTML 5 supports the creation and use of context menus within
webpages and applications.

e hrefis not required on a tag. This allows you to use a tag with scripts and in web
applications without needing a place to send that anchor.

e async attribute — This is added to the script tag to tell the browser that the script should
be loaded asynchronously so that it doesn't slow down the load and display of the rest
of the page.

e <details>— This provides details about an element. This would be like tooltips in non-
web applications

e <datagrid> creates a table that is built from a database or other dynamic source.

e <menu>is an old tag brought back and given new life allowing you to create a menu
system on your webpages.

e <command> defines actions that should happen when a dynamic element is activated.

HTML 5 New Form Types
HTML 5 supports all the standard form input types, but it adds a few more:

e datetime
e datetime-local

e date

e month
o week

e time

e number
e range

e emalil

o url

HTML 5 New Elements
There are a few exciting new elements in HTML 5:

e <canvas>—This element gives you a drawing space in JavaScript on your webpages. It
can add images or graphs to tooltips or create dynamic graphs on your webpages, built
on the fly.

e <video>— Add video to your webpages with this simple tag.

e <audio> - Add sound to your webpages with this simple tag.

HTML 5 Removes Some Elements
Some elements in HTML 4 are no longer be supported by HTML 5. Most are already
deprecated and shouldn't be surprising. They are:

acronym,applet, basefont, big, center, dir, font, frame, frameset, isindex, noframes, noscript, s,
strike, tt, u

Q4 a) Write different selector forms in CSS
SELECTOR FORMS
1) Simple Selector Forms:

In case of simple selector, a tag is used. If the properties of the tag are changed, then it reflects at all
the places when used in the program. The selector can be any tag. If the new properties for a tag are
not mentioned within the rule list, then the browser uses default behaviour of a tag.

Eg:

h1 { font-size : 24pt; }

h2, h3{ font-size : 20pt; }
body b em { font-size : 14pt; }

Only applies to the content of ‘em’ elements that are descendent of bold element in the body of the
document. This is a contextual selector

2) Class Selectors:

Class selectors are used to allow different occurrences of the same tag to use different style
specifications.

Eg

<head>

<style type = "text/css">

p.one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }
p.twof{ font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }
</style>

</head>

<body>

<p class = "one">Web Technology</p>

<p class = "two">Web Technology</p>

</body>

3) Generic Selectors:

Sometimes it is convenient to have a class of Style specification that applies to the content of more
than one kind of tag. This is done by using a generic class, which is defined without a tag name in its

name. In place of the tag name, you use the name of the generic class, which must begin with a
period.

Eg

<head>

<style type = "text/css">

.sale{ font-family: 'Monotype Corsiva'; color: green; }
</style>

</head>

<body>

<p class = "sale">Weekend Sale</p>

<h1 class = "sale">Weekend Sale</h1>

<h6 class = "sale"> Weekend Sale</h6>

</body>

4) id Selectors:

An id selector allows the application of a style to one specific element.
Eg:

<head>

<style type = "text/css">

#one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }
#two { font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }
</style>

</head>

<body>

<p id = "one">Web Technology</p>

<p id = "two">Web Technology</p>

</body>

5) Universal Selectors:

The universal selector, denoted by an asterisk (*), applies its style to all elements in a document.
<head>

<style type = "text/css">

*{ font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

</style>

</head>

<body>

<p>Web Technology</p>

<p>Web Technology</p>

</body>

6) Pseudo Classes:

Pseudo class selectors are used if the properties are to be changed dynamically. For example: when
mouse movement happens, in other words, hover happens or focus happens.

<head>

<style type = "text/css">

input:focus { font-family: 'lucida calligraphy'; color: purple; font-size:100; }
input:hover { font-family: 'lucida handwriting';color: violet; font-size:40; }
</style>

</head>

<body>

<form action="">

<p><label> NAME: <input type = "text" /></label></p>

</form>

</body>

Q4 b) Write XHTML and CSS document to illustrate different font properties

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "“-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml111/DTD/xhtml11.dtd">

<!=- fonts.html
An example to illustrate font properties
-
<html xmlns = “"http://www.w3.0rg/1999/xhtml">
<head> <title> Font properties </title>
<style type = "text/css">
p-major {font-size: l4pt;
font-style: italic;
font-family: 'Times New Roman';
}
p.minor {font: 10pt bold '‘'Courier New';}
h2 {font-family: ‘'Times New Roman';
font-size: 24pt; font-weight: bold)
h3 {font-family: ‘'Courier New'; font-size: 18ptL}
</style>
</head>
<body>
<p class = "major">
If a job is worth doing, it's worth doing right.
</p>
<p class = "minor">
Two wrongs don't make a right, but they certainly
can get you in a lot of trouble.
</p>
<h2> Chapter 1 Introduction </h2>
<h3> 1.1 The Basics of Computer Networks </h3>
</body>
</html>

<?xml version = "1.0Q" encoding = "utf-g"7>
<!DOCTYPE html PUBLIC “=//w3c//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmlll/DTD/xhtmlll.dtd">

<!-- decoration.html
An example that illustrates several of the
possible text decoration values
-
<html xmlns = “http://www.w3.0rg/1999/xhtml ">
<head> <title> Text decoration </Litle>
<sLyle type = "text/css">
p.delete {text-decoration: line-through}
pP.cap {text-decoration: overline}
p.attention {text-decoration: underline}
</style>
</head>
<body>
<p class = "delete">
This illustrates line~through
</p>
<p class= “cap">
This illustrates overline

</p>
<p class = "attention">
This illustrates underline
</p>
</body>
</html>

Q5 a) How arrays can be created in javascript ? Explain all array methods with examples.

Array OBJECT CREATION
The usual way to create any object is with the new operator and a call to a constructor. In the
case of arrays, the constructor is named Array:

var my_list = new@array(l, 2, "three", "four");

var your_list = new Array(100);

The second way to create an Array object is with a literal array value, which is a list of values

enclosed in brackets: var my_list 2 = [1, 2, “three”, “four”];

Array METHODS
Array objects have a collection of useful methods, most of which are described in this
section.
* The join method converts all of the elements of an array to strings and catenates
them into a single string. If no parameter is provided to join, the values in the
new string are separated by commas. If a string parameter is provided, it is used

as the element separator. Consider the following example:

Var names = nev Arrayj "Mary*, "Murray”,
*Murphy®, "Max®];
Var nage string = pames.join(” .
The value of pe stringpnow "Mary : Marray : Murphy : Max™.

¢ The reverse method reverses the order of the elements of the Array object

through which it is called.

o The sort method coerces the elements of the array to become strings if they are
not already strings and sorts them alphabetically
e The concat method catenates its actual parameters to the end of the Array object
on which it is called.
var names = new Array|“*Mary", "Murray”,
*Murphy®, “Max"];
Var new_names = names.concat("Noo®, "Meow");

The new_names array now has length 6, with the elements of names. along

with "Moco® and "Meow" as its fifth and sixth elements

e The slice method does for arrays what the substring method does for
strings, returning the part of the Array object specified by its parameters,
which are used as subscripts. The array returned has the elements of the Array
object through which it is called, from the first parameter up to, but not

including, the second parameter.

'
W)

var 1

st =

(F%)

icell,

r

(B

istZ = list.s

va

2]

e Thevalueof1ist2 isnow [4, 6].Ifslice isgiven justone parameter, the
array that is returned has all of the elements of the object, starting with the

specified index.

* Whenthe toString method is called through an Array object, each of the
elements of the object is converted (if necessary) to a string. These strings are
catenated, separated by commas. So, for Array objects, the toString method
behaves much like join.

¢ The push, pop, unshift, and shift methods of Array allow the easy
implementation of stacks and queues in arrays. The pop and push methods
respectively remove and add an element to the high end of an array, as in the

following code:

The shift and unshift methods respectively remove and add an element to

the beginning of an array.
var deer = list.shift(); // deer is now “Dasher”

list.unshift (“Dasher”); // This puts “Dasher” back on list

// nested_arrays.js
// An example illustrating an array of arrays

// Create an array object with three arrays as its elements
var nested_array = ((2, 4, 6), (1, 3, 5], [10, 20, 30]
1:

// Display the elements of nested_list
for (var row = 0; row <= 2; row++) {
document .write("Row ", row, ": ");

for (var col = 0; col <=2; col++)
document .write(nested_array[row][col], " ");

document .write("
");

Q5 b) How functions are declared in javascript

e A function definition consists of the function’s header and a compound statement that
describes the actions of the function. This compound statement is called the body of the
function.

e A function header consists of the reserved word function, the function’s name, and a
parenthesized list of parameters if there are any.

e Areturn statement returns control from the function in which it appears to the
function’s caller. A function body may include one or more return statements. If there
are no return statements in a function or if the specific return that is executed does
not include an expression, the value returned is undefined.

e JavaScript functions are objects, so variables that reference them can be treated as are
other object references—they can be passed as parameters, be assigned to other
variables, and be the elements of an array. The following example is illustrative:
Because JavaScript functions are objects, their references can be properties in other
objects, in which case they act as methods.

e The following example illustrates a variable number of function parameters:
// params.js
// The params function and a test driver for it.
// This example illustrates a variable number of

// function parameters

// Function params

// Parameters: A variable number of parameters

// Returns: nothing

// Displays its parameters

function params(a, b) {
document.write("Function params was passed ",

arguments.length, " parameter(s)
");

document.write("Parameter values are:
");

for (var arg = 0; arg < arguments.length; arg++)
document.write(arguments[arg], "
");

document.write("
");
}

// A test driver for function params
params ("Mozart");

params ("Mozart", "Beethoven");

params ("Mozart", "Beethoven", "Tchaikowsky");

Q6 a) Write a javascript program to show handling events from textbox and password elements

<?xml version = "1.0" encoding = "utf-8" ?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
“http://www.w3.org/TR/xhtml11/DTD/xhtml1].dtd">

<!-- nochange.html
A document for nochange.js
-
<html xmlns = "http://www.w3.0rq/1999/xhtml">
<head> <title> nochange.html </title>

<l-- Script for the event handlers -->
<script type = “"text/javascript" src = "nochange.js" >
</script>

</head>
<body>
<form action = "">
<h3> Coffee Order Form </h3>

<!-- A bordered table for item orders -->
<table border = "border">

<l-- First, the column headings -->
<tr>

Q6 b) Explain DOM2 event model

The DOM 2 model is a modularized interface. One of the DOM 2 modules is Events, which includes
several sub-modules. The ones most commonly used are HTMLEvents and MouseEvents. The
interfaces and events defined by these modules are as follows:

Nidude Evest Interface

H™NIEvents | Event
MonseEy YjuseE
EVENT PROPAGATION:

e A browser which understands DOM, on receiving the XHTML document from the server,
creates a tree known as document tree.

e The tree constructed consists of elements of the document except the HTML

e The root of the document tree is document object itself

e The other elements will form the node of the tree

e In case of DOM2, the node which generates an event is known as target node

Once the event is generated, it starts the propagation from root node

During the propagation, if there are any event handlers on any node and if it is enabled then
event handler is executed

The event further propagates and reaches the target node.

When the event handler reaches the target node, the event handler gets executed

After this execution, the event is again re-propagated in backward direction

During this propagation, if there are any event handlers which are enabled, will be executed.
The propagation of the even from the root node towards the leaf node or the target node is
known as capturing phase.

The execution of the event handler on the target node is known as execution phase.

This phase is similar to event handling mechanism in DOM -0

The propagation of the event from the leaf or from the target node is known as bubbling
phase

All events cannot be bubbled for ex: load and unload event

If user wants to stop the propagation of an event, then stop propagation has to be executed.

EVENT REGISTRATION:

In case of DOM2, the events get registered using an APl known as addEventListener

The first arg is the eventName. Ex: click, change, blur, focus

The second arg is the event handler function that has to be executed when there is an event
The third arg is a Boolean argument that can either take a true or false value

If the value is true, it means event handler is enabled in capturing phase

If the event value if off (false), then event handler is enabled at target node

The addEventListener method will return event object to eventhandler function. The event
object can be accessed using the keyword “Event”

The address of the node that generated event will be stored in current target, which is
property of event object

Q7 a) Explain the ways of positing the elements in dynamic document with javascript with suitable
example

The position property has three possible values: absolute, relative, and static.
1)ABSOLUTE POSITIONING

e The absolute value is specified for position when the element is to be placed at a specific
place in the document display without regard to the positions of other elements.

e One use of absolute positioning is to superimpose special text over a paragraph of
ordinary text to create an effect similar to a watermark on paper.

e Alarger italicized font, in a light-gray color and with space between the letters, could be
used for the special text, allowing both the ordinary text and the special text to be
legible.

Example

rxml version *"1.0" encoding LETY o

<!DOCTYPE html PUBLIC "-//w3c//DTD HTMI L. 1/ /EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml 1] .dea”
<|—-— absPos.html
Illustrates absolute positioning of lements
<html xmlns "http://www.w3.0r3/1999/xhtml™
<head>
<title> Absolute positioning Aitle
<style type = "text/css">
ith 00y
i | L
| ! Oy
' I 1 1
I i1 I
) 1 1cl
n h Jenug 1y
(o] | "y 3 1
1t m
| { Y ! f
] §) \
\ 1 h cl
(AL) € L

2)RELATIVE POSITIONING

e Anelement that has the position property set to relative, but does not specify top and left
property values, is placed in the document as if the position attribute were

e notsetatall.

e However, such an element can be moved later.

e If the top and left properties are given values, they displace the element by the specified
amount from the position where it would have been placed.

e In both the case of an absolutely positioned element inside another element and the case of
a relatively positioned element, negative values of top and left displace the element upward
and to the left, respectively.

e Relative positioning can be used for a variety of special effects in placing elements.

Example

GOOD /sSpan fo SO,
</ p>
</ body >
</html=

3)STATIC POSITIONING
o The default value for the position property is static.

e Astatically positioned element is placed in the document as if it had the position value of
relative but no values for top or left were given.

e The difference is that a statically positioned element cannot have its top or left properties
initially set or changed later.

o Therefore, a statically placed element cannot be displaced from its normal position and
cannot be moved from that position later.

Q7 b) write a program to implement stacking of elements

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmI11/DTD/xhtml11.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm|">
<head><title>Program 7a</title>
<script type="text/javascript">
var oldid="p3";
function toTop(topid){
domTop=document.getElementByld(oldid).style;
domNew=document.getElementByld(topid).style;
domTop.zIndex="0";
domNew.zIndex="10";
oldid=topid;
}
function toDown(downid){
document.getElementByld(downid).style.zIndex="0";
}
</script>
<style type="text/css">
.paral{
position:absolute;
top:0px;

left:0px;

z-index:0;
width:200px;
height:200px;
background-color:red;

}
.para2{
position:absolute;
top:100px;
left:100px;
z-index:0;
width:200px;
height:200px;
background-color:blue;
}
.para3{
position:absolute;
top:200px;
left:200px;
z-index:0;
width:200px;
height:200px;
background-color:green;
}
</style>
</head>
<body>
<p class="paral" id="p1" onmouseover="toTop('pl')" onmouseout="toDown('p1')"> Frame One
</p>
<p class="para2" id="p2" onmouseover="toTop('p2')" onmouseout="toDown('p2')"> Frame Three
</p>

<p class="para3" id="p3" onmouseover="toTop('p3')" onmouseout="toDown('p3')"> Frame Two
</p>

</body>

</html>

Q8 a) Explain the syntax of XML

e XML imposes two distinct levels of syntax:

e Thereis a general low level syntax that is appreciable on all XML documents

e The other syntactic level is specified by DTD (Document Type Definition) or XML schemas.

e The DTDs and XML schemas specify a set of tag and attribute that can appear in a particular
document or collection of documents.

e They also specify the order of occurrence in the document.

o The XML documents consists of data elements which form the statements of XML
document.

e The XML document might also consists of markup declaration, which act as instructions to
the XML parser

o All XML documents begin with an XML declaration. This declaration identifies that the
document is a XML document and also specifies version number of XML standard.

e |talso specifies encoding standard.
<?xml version = “1.0” encoding = “utf-8"7?>

e Comments in XML is similar to HTML

e XML names are used to name elements and attributes.

e XML names are case-sensitive.

e There is no limitation on the length of the names.

e All XML document contains a single root element whose opening tag appears on first line of
the code

e All other tags must be nested inside the root element

e Asin case of XHTML, XML tags can also have attributes

o The values for the attributes must be in single or double quotation

Example:
<?xml version = “1.0” encoding = “utf-8”?>
<student>
<name>XYZ</name>
<usn>1CY17MCAO01</usn>
</student>

Tags with attributes

The above code can be also written as
<student name = “XYZ” usn = “1CY17MCA01”> </student>

Q8 b) How XML documents can be written with XSLT form explain

An XML document that is to be used as data to an XSLT style sheet must include a processing
instruction to inform the XSLT processor that the style sheet is to be used. The form of this
instruction is as follows:

<?xml-stylesheet type="text/xsl” href="XSL_stylesheet_name”?>

An XSLT style sheet is an XML document whose root element is the special-purpose element
stylesheet. The stylesheet tag defines namespaces as its attributes and encloses the collection of
elements that defines its transformations. It also identifies the document as an XSLT document.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”>

In many XSLT documents, a template is included to match the root node of the XML document.
<xsl:template match="/">

In many cases, the content of an element of the XML document is to be copied to the output
document.

This is done with the value-of element, which uses a select attribute to specify the element of the
XML document whose contents are to be copied. <xsl:value-of select="name"/> The select attribute
can specify any node of the XML document. This is an advantage of XSLT formatting over CSS, in
which the order of data as stored is the only possible order of display.

Q8 c) Differentiate between XML and HTML

Parameter XML HTML

Type of XML is a framework for HTML is predefined markup
language specifying markup languages. language.

Language type | Case sensitive Case insensitive

Structural Itis provided It is not provided.

details

Purpose Transfer of data Presentation of the data

Coding Errors

No coding errors are allowed.

Small errors are ignored.

Whitespace You can use whitespaces in You can't use white spaces in
your code. your code.
Nesting Should be done appropriately. Does not have any effect on the
code.
Driven by XML is content driven HTML is format driven
End of tags The closing tag is essential ina | The closing tag is not always
well-formed XML document. required. <HTML> tag needs an
equivalent </HTML> tag but

tag does not require </br> tag
Quotes Quotes required around XML Quotes are not required for the

attribute values.

values of attributes.

Object support

Objects have to be expressed
by conventions. Mostly using
attributes and elements.

Offers native object support

Null support Need to use xsi:nil on elements | Natively recognizes the null value.
in an XML instance document
and also need to import the
corresponding namespace.

Namespaces XML provides support for Does not support the concept of
namespaces. It helps you to namespaces. Naming collisions
remove the risk of name can be avoided either using a
collisions when combining with prefix in an object member name
other documents. or by nesting objects.

Formatting Require more significant effort Provides direct mapping for

decisions to map application types to XML | application data.
elements and attributes.

Size Documents are mostly lengthy The syntax is very brief and yields
in size, especially when an formatted text.
element-centric approach used
in formatting.

Parsing in Requires an XML DOM No extra application code required

Javascript implementation and application | to parse text. For this purpose,
code to map text back into you can use the eval function of
JavaScript objects. JavaScript.

Learning curve | Very hard as you need to learn HTML is a simple technology
technologies like XPath, XML stack that is familiar to developers.
Schema, DOM, etc.

Q9 a) Explain different jquery wrapper

When CSS was introduced to web technologies in order to separate design from content, a way was
needed to refer to groups of page elements from external style sheets. The method developed was
through the use of selectors, which concisely represent elements based upon their attributes or
position within the HTML document.

For example, the selector
pa

refers to the group of all links (<a> elements) that are nested inside a <p> element. jQuery makes
use of the same selectors, supporting not only the common selectors currently used in CSS, but also
the more powerful ones not yet fully implemented by most browsers.

To collect a group of elements, we use the simple syntax

S(selector)
or
jQuery(selector)

For example, to retrieve the group of links nested inside a <p> element, we use the following

$("pa")

The S() function (an alias for the jQuery() function) returns a special Java-Script object containing an
array of the DOM elements that match the selector.

This object possesses a large number of useful predefined methods that can act on the group of
elements.

In programming parlance, this type of construct is termed a wrapper because it wraps the matching

element(s) with extended functionality. The term jQuery wrapper or wrapped set to refer to this set
of matched elements that can be operated on with the methods defined by jQuery.

Example
S("div.notLongForThisWorld").fadeOut();
S("div.notLongForThisWorld").fadeOut().addClass("removed");

Q9 b) Explain the following commands: size(), get(), index(), not(), add()

Determining the size of the wrapped set

Command syntax: size
size()
Retumns the count of elements in the wrapped set

Parameters

none

Returns
The element count

Consider the following statement:
S('#someDiv') .html('There are "+5('a").size()+' link(s) on this page.');

The inner jQuery wrapper matches all elements of type <a> and returns the number of
matched elements using the size{) method.

Il. Obtaining elements from the wrapped set
Because jQuery allows us to treat the wrapped set as a JavaScript array, we can use
simple array indexing to obtain any element in the wrapped list by position.
If we prefer to use a method rather than array indexing, jQuery defines the get()
method for that purpose.

Command syntax: get
get (index)

Obtains one or all of the matched elements in the wrapped set. If no parameter is specified,
all elements in the wrapped set are returned in a JavaScript array. If an index parameter is
provided, the indexed element is retumed

Parameters
index (Number) The index of the single element to return. If omitted, the entire set is
retumed in an array.

Returns
A DOM element or an array of DOM elements.

The get() method can also be used to obtain a plain JavaScript array of all the wrapped
elements. Consider:
wvar alll ahaladRiuttnne = Ql'lahal+hittan'y oatil-

index() command is used to find the index of a particular element in the wrapped set.

Command syntax: index
index (element)
Finds the passed element in the wrapped set and returns its ordinal index within the set. If
the element isn't resident in the set, the value -1 is returmned.

Parameters
element (Element) A reference to the element whose ordinal value is to be determined.

Returns
The ordinal value of the passed element within the wrapped set or -1 if not found.

Slicing and dicing the wrapped element set

Once we have a wrapped element set, we may want to augment that set by adding to it
or by reducing the set to a subset of the originally matched elements. jQuery gives usa
large collection of methods to manage the set of wrapped elements.

Adding more elements to the wrapped set

Often, we may find ourselves in a situation where we want to add more elements to an
existing wrapped set. This capability is most useful when we want to add more elements
after applying some command to the original set

S('img[alt]').add('imgltitle]')

Using the add() method in this fashion allows us to chain a bunch of selectors together
into an or relationship, creating the union of the elements that satisfy both of the
selectors. Methods such as add() can also be useful in place of selectors in that the end()
method can be used to back out of the elements added via add().

Command syntax: add
add (expression)

Adds elements, specified by the expression parameter, to the wrapped set. The expression
can be a selector, an HTML fragment, a DOM element, or an amray of DOM elements.

Parameters
expression (String|Element|Array) Specifies what is to be added to the matched set,
This parameter can be a jQuery selector, in which case any matched
elements are added to the set. If an HTML fragment, the appropriate
elements are created and added to the set. If a DOM element or an array
of DOM elements, they are added to the set.

Returns
The wrapped set.

Example :
$('img[alt]').addClass('thickBorder').add('img[title]').addClass('seeThrough')

The add() method can also be used to add elements to an existing wrapped set
given references to those elements. Passing an element reference, or an array of

14

element references, to the add() method adds the elements to the wrapged set.
S img akk] padd isomeELlement)

The add() methad not anly allows us to add existing elements to the wrapped set, we
can also wse it to add new elements by passing it a string containing HTRL markup.

5p). el <dmee= Hi there =5idiv>')
Honing the contents of the wrapped et

By using the not|) method, which removes any elements from a wrapped sat that match
the passed selector exprassion, we can express an except type of relationship.

Command syntax: moed
nat [axpresaies)

Remoees slemanis from T malched set socomding o the valus of the expresalon parames
1 i the porameter i @ jJuery Ther selectss, o sranzhing elements ane remosed. T om ele-
menl nelemnos & passed. thal ciement & emoved from the sal

Pamirnrlim
eapresaion (SinEElement|dmeg) & [Query e o . wiarremn] , o
aifdy o Mt efenies definitg whon i 10 b raded from e
wrHppesd el
st et

Thia wispgeed Gl

Asowith add(), the not{] methed can also be used o remowve individual elements from
the wrapped set by passing a reference to an element or an array of element
references.

Al tirnes, we may want Lo filter the wrapped set in ways that are difficult or impossible
ter express with a selector expression, Insuch cases, we ray need Lo reso to
programmatic filtering of the wrapped set itens,

The filter() method, when passed a function, invokes that function for each wrapped
element and removes any element whose fundtion invocation returns the value false.
Each inwocation has access to the current wrapped slement via the function contest
[this)in the body of the filteding function.

Command synis: Slter
Eiltar (sxpreasion}

Filtera ool ahments o e wragped sl wiongd @ paised milecior apess o8, or a Bllsring
huselisn

Pns v L
saprsssion |SurngFueton | Spesies a ey sele=iw ceed Lo e sl eeTents
thaal o nol malch from e seapeesd sol, o6 @ Tureto ol s s
Tinerirg devisdon. This fureson & irvokesd for eich ehenment n e e
wilh Lhe cument elemend? sef i e funciion confes! for thal smocalon.
Ay = lmmen| that relumes a0 reccston of 2ales m smersd hom
The st

Batums
Thé el ppeel SeL

Q10 a) How attr() command can be used in a different ways in manipulating element.

There are two ways to set attributes onto elements in the wrapped set with jQuery.

attr(name,value)
Sets the named attribute onto all elements in the wrapped set using the passed value.
Parameters

name (String) The name of the attribute to be set.

value (String|Object|Function) Specifies the value of the attribute, This can be any Java-
Script expression that results in a value, or it can be a function, See the following
discussion for how this parameter is handled,

Returns
The wrapped set.

attr(attributes)

Sets the attributes and values specified by the passed object onto all elements of the
matched set

Parameters
attributes (Object) An object whose properties are copied as attributes to all
elements in the wrapped set

Returns
The wrapped set

Q10 b) Explain the following commands bind(), one(), unbind(), trigger(), eventName()
I. Binding event handlers using jQuery

Using the jQuery Event Model, we can establish event handlers on DOM elemnents
with the bind() command. Consider the following simple example:

$('img').bind('click’,function(event){alert('Hi there!');});

This statement binds the supplied inline function as the click event handler for
every image on a page. The full syntax of the bind() command is as follows:

bind(eventType,data, listener)

Establishes a function as the event handler for the specified event type on all elements in
the matched set.

Parameters

eventType (5tring) Specifies the name of the event type for which the handler is to be
established. This event type can be namespaced with a suffix separated
from the event name with a period character. See the remainder of this
section for details.

data (Object) Caller-supplied data that's attached to the Event instance as a
property named data for availability to the handler functions. If omitted, the
handler function can be specified as the second parameter.

listener (Function) The function that's to be established as the event handler.

Returns
The wrapped set.

jQuery also provides a specialized version of the bind() command, named one(), that
establishes an event handler as a one-shot deal. Once the event handler executes

the first time, it's automatically removed as an event handler. Its syntax is similar to the
bind() command and is as follows:

Command syntax: one
one (eventType,data,listener)

Establishes a function as the event handler for the specified event type on all elements in
the matched set. Once executed, the handler is automatically removed.

Parameters
eventType (String) Specifies the name of the event type for which the handler is to be
established.
data (Object) Caller-supplied data that's attached to the Event instance for avail

ability to the handler functions. If omitted, the handler function can be spec-
ified as the second parameter.

listener (Function) The function that’s to be established as the event handler.

Returns
The wrapped set.

Removing event handlers

We've seen that the one() command can automatically remove a handler after it has
completed its first (and only) execution, but for the more general case where we’d like
to remove event handlers under our own control, jQuery provides the unbind()
command.

The syntax of unbind() is as follows:

Command syntax: unbind
unbind (eventType, listener)

unbind (event)

Removes eveints handlers from all elements of the wrapped set as specified by the optional
passed parameters. If no parameters are provided, all listeners are removed frem the ele-
ments.

Parameters.
eventType (Sting) If provided, specifies that only listeners established for the specified
event type are o be removed,

listensr (Function) If provided, identifies the specific listener that's to be removed.

event (Event) Removes the listener that triggered the event described by this Event
instance,

Returns

The wrapped set.
This command can be used to remove event handlers from the elements of the matched
set at various levels of granularity. All listeners can be removed by omitting parameters,
or listeners of a specific type can be removed by providing that event type.

V. Triggering event handlers

jQuery has provided means to assist us in avoiding top -level functions by defining a
series of methods that will automatically trigger event handlers on our behalf under

script control. The most general of these commands is trigger(), whose syntax is as
follows:

Command syntax: trigger
trigger (eventType)
Invokes any event handlers established for the passed event type for all matched elements

Parameters

eventType (String) Specifies the name of the event type for handlers which are
1o be invoked

Returns
The wrapped set

The trigger() command does not cause an event to be triggered and to propagate
through the DOM hierarchy. As there's no dependable cross-browser means to generate
an event, jQuery calls the handlers as normal functions.

Each handler called is passed a minimally populated instance of Event.

Because there's no event, properties that report values, such as the location of a mouse
event, have no value. The target property is set to reference the element of the
matched set to which the handler was bound.

Also because there's no event, no event propagation takes place. The handlers bound to
the matched elements will be called, but no handlers on the ancestors of those
elements will be invoked.

In addition to the trigger() command, jQuery provides convenience commands for most
of the event types. The syntax for all these commands is exactly the same except for the
command name, and that syntax is described as follows:
Command syntax: eventName
eventName()

Invokes any event handlers established for the named event type Tor all matched elements.
The supported commands are as follows:

blur
click
focus
select
submit

Parameters
none

Returns
The wrapped set.

In addition to binding, unbinding, and triggering event handlers, jQuery offers high-level
functions that further make dealing with events on our pages as easy as possible.

