

Q1 a) What are the two phases of HTTP? Explain each of them in detail.

Request Phase:

The general form of an HTTP request is as follows:

1. HTTP method Domain part of the URL HTTP version

2. Header fields

3. Blank line

4. Message body

The following is an example of the first line of an HTTP request:

GET /storefront.html HTTP/1.1

The format of a header field is the field name followed by a colon and the value of the field.

There are four categories of header fields:

1. General: For general information, such as the date

2. Request: Included in request headers

3. Response: For response headers

4. Entity: Used in both request and response headers

A wildcard character, the asterisk (*), can be used to specify that part of a MIME type can be

anything.

The Host: host name request field gives the name of the host. The Host field is required for

HTTP 1.1. The If-Modified-Since: date request field specifies that the requested file should be

sent only if it has been modified since the given date. If the request has a body, the length of

that body must be given with a Content-length field. The header of a request must be followed

by a blank line, which is used to separate the header from the body of the request.

The Response Phase:

The general form of an HTTP response is as follows:

1. Status line

2. Response header fields

3. Blank line

4. Response body

The status line includes the HTTP version used, a three-digit status code for the response, and a

short textual explanation of the status code.

For example, most responses begin with the following:

HTTP/1.1 200 OK

The status codes begin with 1, 2, 3, 4, or 5. The general meanings of the five categories

specified by these first digits are shown in Table 1.2.

One of the more common status codes is one user never want to see: 404 Not Found, which

means the requested file could not be found.

Q1b) Explain the following i)Domain name ii)URL

Domain Names

The IP addresses are numbers. Hence, it would be difficult for the users to remember IP

address. To solve this problem, text based names were introduced. These are technically known

as domain name system (DNS).

These names begin with the names of the host machine, followed by progressively larger

enclosing collection of machines, called domains. There may be two, three or more domain

names. DNS is of the form hostname.domainName.domainName.

Example: www.amazon.in

The steps for conversion from DNS to IP:

 The DNS has to be converted to IP address before destination is reached.

 This conversion is needed because computer understands only numbers.

 The conversion is done with the help of name server.

 As soon as domain name is provided, it will be sent across the internet to contact name

servers.

 This name server is responsible for converting domain name to IP

 If one of the name servers is not able to convert DNS to IP, it contacts other name

server.

 This process continues until IP address is generated.

 Once the IP address is generated, the host can be accessed.

 The hostname and all domain names form what is known as FULLY QUALIFIED DOMAIN

NAME.

 This is as shown below:

UNIFORM RESOURCE LOCATORS

 Uniform Resource Locators (URLs) are used to identify different kinds of resources on

Internet.

 If the web browser wants some document from web server, just giving domain name is

not sufficient because domain name can only be used for locating the server.

 It does not have information about which document client needs. Therefore, URL should

be provided.

 The general format of URL is: scheme: object-address

Example: http: www.vtu.ac.in/results.php

 The scheme indicates protocols being used. (http, ftp, telnet...)

 In case of http, the full form of the object address of a URL is as follows:

//fully-qualified-domain-name/path-to-document

 URLs can never have embedded spaces

 It cannot use special characters like semicolons, ampersands and colons

 The path to the document for http protocol is a sequence of directory names and a

filename, all separated by whatever special character the OS uses. (Forward or

backward slashes)

 The path in a URL can differ from a path to a file because a URL need not include all

directories on the path

 A path that includes all directories along the way is called a complete path.

Example: http://www.gumboco.com/files/f99/storefront.html

 In most cases, the path to the document is relative to some base path that is specified in

the configuration files of the server. Such paths are called partial paths.

Example: http://www.gumboco.com/storefront.html

Q2a) With an example explain list tags

1) Unordered List

The tag, which is a block tag, creates an unordered list. Each item in a list is

specified with an tag (li is an acronym for list item). Any tags can appear in a list

item, including nested lists. When displayed, each list item is implicitly preceded by a

bullet

2) Ordered List

Ordered lists are lists in which the order of items is important. This ordered-ness of a

list is shown in the display of the list by the implicit attachment of a sequential value

to the beginning of each item. The default sequential values are Arabic numerals,

beginning with 1.

An ordered list is created within the block tag . The items are specified and

displayed just as are those in unordered lists, except that the items in an ordered list

are preceded by sequential values instead of bullets.

3) Definition List

As the name implies, definition lists are used to specify lists of terms and their

definitions, as in glossaries. A definition list is given as the content of a <dl> tag, which is

a block tag. Each term to be defined in the definition list is given as the content of a

<dt>tag. The definitions themselves are specified as the content of <dd> tags. The

defined terms of a definition list are usually displayed in the left margin; the definitions

are usually shown indented on the line or lines following the term.

Q2b) Write and xhtml program to describe a table with rows. Col, colspan and rowspan attributes

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>MCA Department</title>

 </head>

 <body bgcolor="AliceBlue">

 <h3 id="3">Time Table</h3>

 <table border="1" cellspacing="5" cellpadding="5">

 <tr>

 <td></td>

 <td>8-9</td>

 <td>9-10</td>

 <td>10-10:30</td>

 <td>10.30-11.30</td>

 <td>11.30-12:30</td>

 <td>12:30-1:30</td>

 <td>1:30-2:30</td>

 <td>2:30-3:30</td>

 </tr>

 <tr>

 <td>Day 1</td>

 <td>web</td>

 <td>unix</td>

 <td rowspan="3">Break</td>

 <td>dms</td>

 <td>co</td>

 <td rowspan="3">Break</td>

 <td>ds</td>

 <td>unix</td>

 </tr>

 <tr>

 <td>Day 2</td>

 <td>web</td>

 <td>unix</td>

 <td>dms</td>

 <td>co</td>

 <td>ds</td>

 <td>unix</td>

 </tr>

 <tr>

 <td>Day 3</td>

 <td>web</td>

 <td>unix</td>

 <td>dms</td>

 <td>co</td>

 <td colspan="2">Lab</td>

 </tr>

 </table>

 </body>

</html>

Q3a) Explain the tags nav, section, article, aside, footer

1) Nav

The <nav> tag is a new element in HTML5. It is used to define a block of navigation

links, either within the current document or to other documents. Examples of navigation

blocks are menus, tables of contents, and indexes.

One HTML document may contain several <nav> tags, for example, one for site navigation

and one for intra-page navigation.

Note that not all links in the HTML document can be placed inside the <nav> element; it can

only include major navigation blocks. For example, the <nav> tag is not placed in the

<footer> tag for defining links in the footer of the website.

Example:

<nav>

HTML | CSS | JavaScript | PHP |

</nav>

2) Section

The HTML <section> tag specifies a section in a document.

<!DOCTYPE html>

<html>

<head>

<title>HTML Section Tag</title>

</head>

<body>

<section>

<h1>Java</h1>

<h3>Inheritance</h3>

<p>Inheritance defines the relationship between superclass and subclass.</p>

</section>

</body>

</html>

3) Article

The <article> tag specifies independent, self-contained content.

An article should make sense on its own and it should be possible to distribute it

independently from the rest of the site.

Potential sources for the <article> element:

Forum post

Blog post

News story

Comment

<article>

<h1>Google Chrome</h1>

<p>Google Chrome is a free, open-source web browser developed by Google,

released in 2008.</p>

</article>

4) Aside

The <aside> tag defines some content aside from the content it is placed in.

The aside content should be related to the surrounding content.

<p>My family and I visited The Epcot center this summer.</p>

<aside>

<h4>Epcot Center</h4>

<p>The Epcot Center is a theme park in Disney World, Florida.</p>

</aside>

5) Footer

The <footer> tag defines a footer for a document or section.

A <footer> element should contain information about its containing element.

A <footer> element typically contains:

authorship information

copyright information

contact information

sitemap

back to top links

related documents

You can have several <footer> elements in one document.

Q3 b) Explain the feature of HTML5

HTML 5 adds a lot of new features to the HTML specification, and it is easy it is to implement.

You use the HTML 5 doctype, which is simple and streamlined:

<!doctype html>

HTML 5 is no longer part of SGML but is instead a markup language all on its own.

The character set for HTML 5 is streamlined as well. It uses UTF-8, and you define it with

just one meta tag:

<meta charset="UTF-8">

HTML 5 New Structure

HTML 5 recognizes that webpages have a structure, just like books and other XML

documents have a structure. In general, webpages have navigation, body content, sidebar

content, headers, footers, and other features. HTML 5 has tags to support those elements

of the page. They are:

 <section> defines sections of pages.

 <header> defines the header of a page.

 <footer> defines the footer of a page.

 <nav> defines the navigation on a page.

 <article> defines the article or primary content on a page.

 <aside> defines extra content like a sidebar on a page.

 <figure> defines images that annotate an article.



HTML 5 New Inline Elements

The new inline elements define some basic concepts and keep them semantically marked

up:

 <mark> indicates content that is marked in some fashion.

 <time> indicates content that is a time or date.

 <meter> indicates content that is a fraction of a known range such as disk usage.

 <progress> indicates the progress of a task towards completion.



HTML 5 New Dynamic Pages Support

HTML 5 was developed to help web application developers, so there are a lot of new

features that make it easy to create dynamic HTML pages:

 Context menus – HTML 5 supports the creation and use of context menus within

webpages and applications.

 href is not required on a tag. This allows you to use a tag with scripts and in web

applications without needing a place to send that anchor.

 async attribute – This is added to the script tag to tell the browser that the script should

be loaded asynchronously so that it doesn't slow down the load and display of the rest

of the page.

 <details> – This provides details about an element. This would be like tooltips in non-

web applications

 <datagrid> creates a table that is built from a database or other dynamic source.

 <menu> is an old tag brought back and given new life allowing you to create a menu

system on your webpages.

 <command> defines actions that should happen when a dynamic element is activated.

HTML 5 New Form Types

HTML 5 supports all the standard form input types, but it adds a few more:

 datetime

 datetime-local

 date

 month

 week

 time

 number

 range

 email

 url

HTML 5 New Elements

There are a few exciting new elements in HTML 5:

 <canvas> – This element gives you a drawing space in JavaScript on your webpages. It

can add images or graphs to tooltips or create dynamic graphs on your webpages, built

on the fly.

 <video> – Add video to your webpages with this simple tag.

 <audio> – Add sound to your webpages with this simple tag.

HTML 5 Removes Some Elements

Some elements in HTML 4 are no longer be supported by HTML 5. Most are already

deprecated and shouldn't be surprising. They are:

acronym,applet, basefont, big, center, dir, font, frame, frameset, isindex, noframes, noscript, s,

strike, tt, u

Q4 a) Write different selector forms in CSS

SELECTOR FORMS

1) Simple Selector Forms:

In case of simple selector, a tag is used. If the properties of the tag are changed, then it reflects at all

the places when used in the program. The selector can be any tag. If the new properties for a tag are

not mentioned within the rule list, then the browser uses default behaviour of a tag.

Eg:

h1 { font-size : 24pt; }

h2, h3{ font-size : 20pt; }

body b em { font-size : 14pt; }

Only applies to the content of ‘em’ elements that are descendent of bold element in the body of the

document. This is a contextual selector

2) Class Selectors:

Class selectors are used to allow different occurrences of the same tag to use different style

specifications.

Eg

<head>

<style type = "text/css">

p.one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

p.two{ font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }

</style>

</head>

<body>

<p class = "one">Web Technology</p>

<p class = "two">Web Technology</p>

</body>

3) Generic Selectors:

Sometimes it is convenient to have a class of Style specification that applies to the content of more

than one kind of tag. This is done by using a generic class, which is defined without a tag name in its

name. In place of the tag name, you use the name of the generic class, which must begin with a

period.

Eg

<head>

<style type = "text/css">

.sale{ font-family: 'Monotype Corsiva'; color: green; }

</style>

</head>

<body>

<p class = "sale">Weekend Sale</p>

<h1 class = "sale">Weekend Sale</h1>

<h6 class = "sale"> Weekend Sale</h6>

</body>

4) id Selectors:

An id selector allows the application of a style to one specific element.

Eg:

<head>

<style type = "text/css">

#one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

#two { font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }

</style>

</head>

<body>

<p id = "one">Web Technology</p>

<p id = "two">Web Technology</p>

</body>

5) Universal Selectors:

The universal selector, denoted by an asterisk (*), applies its style to all elements in a document.

<head>

<style type = "text/css">

*{ font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

</style>

</head>

<body>

<p>Web Technology</p>

<p>Web Technology</p>

</body>

6) Pseudo Classes:

Pseudo class selectors are used if the properties are to be changed dynamically. For example: when

mouse movement happens, in other words, hover happens or focus happens.

<head>

<style type = "text/css">

input:focus { font-family: 'lucida calligraphy'; color: purple; font-size:100; }

input:hover { font-family: 'lucida handwriting';color: violet; font-size:40; }

</style>

</head>

<body>

<form action = " ">

<p><label> NAME: <input type = "text" /></label></p>

</form>

</body>

Q4 b) Write XHTML and CSS document to illustrate different font properties

Q5 a) How arrays can be created in javascript ? Explain all array methods with examples.

Q5 b) How functions are declared in javascript

 A function definition consists of the function’s header and a compound statement that

describes the actions of the function. This compound statement is called the body of the

function.

 A function header consists of the reserved word function, the function’s name, and a

parenthesized list of parameters if there are any.

 A return statement returns control from the function in which it appears to the

function’s caller. A function body may include one or more return statements. If there

are no return statements in a function or if the specific return that is executed does

not include an expression, the value returned is undefined.

 JavaScript functions are objects, so variables that reference them can be treated as are

other object references—they can be passed as parameters, be assigned to other

variables, and be the elements of an array. The following example is illustrative:

Because JavaScript functions are objects, their references can be properties in other

objects, in which case they act as methods.

Q6 a) Write a javascript program to show handling events from textbox and password elements

Q6 b) Explain DOM2 event model

The DOM 2 model is a modularized interface. One of the DOM 2 modules is Events, which includes

several sub-modules. The ones most commonly used are HTMLEvents and MouseEvents. The

interfaces and events defined by these modules are as follows:

EVENT PROPAGATION:

 A browser which understands DOM, on receiving the XHTML document from the server,

creates a tree known as document tree.

 The tree constructed consists of elements of the document except the HTML

 The root of the document tree is document object itself

 The other elements will form the node of the tree

 In case of DOM2, the node which generates an event is known as target node

 Once the event is generated, it starts the propagation from root node

 During the propagation, if there are any event handlers on any node and if it is enabled then

event handler is executed

 The event further propagates and reaches the target node.

 When the event handler reaches the target node, the event handler gets executed

 After this execution, the event is again re-propagated in backward direction

 During this propagation, if there are any event handlers which are enabled, will be executed.

 The propagation of the even from the root node towards the leaf node or the target node is

known as capturing phase.

 The execution of the event handler on the target node is known as execution phase.

 This phase is similar to event handling mechanism in DOM – 0

 The propagation of the event from the leaf or from the target node is known as bubbling

phase

 All events cannot be bubbled for ex: load and unload event

 If user wants to stop the propagation of an event, then stop propagation has to be executed.

EVENT REGISTRATION:

 In case of DOM2, the events get registered using an API known as addEventListener

 The first arg is the eventName. Ex: click, change, blur, focus

 The second arg is the event handler function that has to be executed when there is an event

 The third arg is a Boolean argument that can either take a true or false value

 If the value is true, it means event handler is enabled in capturing phase

 If the event value if off (false), then event handler is enabled at target node

 The addEventListener method will return event object to eventhandler function. The event

object can be accessed using the keyword “Event”

 The address of the node that generated event will be stored in current target, which is

property of event object



Q7 a) Explain the ways of positing the elements in dynamic document with javascript with suitable

example

The position property has three possible values: absolute, relative, and static.
1)ABSOLUTE POSITIONING

 The absolute value is specified for position when the element is to be placed at a specific
place in the document display without regard to the positions of other elements.

 One use of absolute positioning is to superimpose special text over a paragraph of
ordinary text to create an effect similar to a watermark on paper.

 A larger italicized font, in a light-gray color and with space between the letters, could be
used for the special text, allowing both the ordinary text and the special text to be
legible.

Example

2)RELATIVE POSITIONING

 An element that has the position property set to relative, but does not specify top and left
property values, is placed in the document as if the position attribute were

 not set at all.

 However, such an element can be moved later.

 If the top and left properties are given values, they displace the element by the specified
amount from the position where it would have been placed.

 In both the case of an absolutely positioned element inside another element and the case of
a relatively positioned element, negative values of top and left displace the element upward
and to the left, respectively.

 Relative positioning can be used for a variety of special effects in placing elements.

Example

3)STATIC POSITIONING

 The default value for the position property is static.

 A statically positioned element is placed in the document as if it had the position value of
relative but no values for top or left were given.

 The difference is that a statically positioned element cannot have its top or left properties
initially set or changed later.

 Therefore, a statically placed element cannot be displaced from its normal position and
cannot be moved from that position later.

Q7 b) write a program to implement stacking of elements

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>Program 7a</title>

<script type="text/javascript">

var oldid="p3";

function toTop(topid){

domTop=document.getElementById(oldid).style;

domNew=document.getElementById(topid).style;

domTop.zIndex="0";

domNew.zIndex="10";

oldid=topid;

}

function toDown(downid){

document.getElementById(downid).style.zIndex="0";

}

</script>

<style type="text/css">

.para1{

position:absolute;

top:0px;

left:0px;

z-index:0;

width:200px;

height:200px;

background-color:red;

}

.para2{

position:absolute;

top:100px;

left:100px;

z-index:0;

width:200px;

height:200px;

background-color:blue;

}

.para3{

position:absolute;

top:200px;

left:200px;

z-index:0;

width:200px;

height:200px;

background-color:green;

}

</style>

</head>

<body>

<p class="para1" id="p1" onmouseover="toTop('p1')" onmouseout="toDown('p1')"> Frame One

</p>

<p class="para2" id="p2" onmouseover="toTop('p2')" onmouseout="toDown('p2')"> Frame Three

</p>

<p class="para3" id="p3" onmouseover="toTop('p3')" onmouseout="toDown('p3')"> Frame Two

</p>

</body>

</html>

Q8 a) Explain the syntax of XML

 XML imposes two distinct levels of syntax:

 There is a general low level syntax that is appreciable on all XML documents

 The other syntactic level is specified by DTD (Document Type Definition) or XML schemas.

 The DTDs and XML schemas specify a set of tag and attribute that can appear in a particular

document or collection of documents.

 They also specify the order of occurrence in the document.

 The XML documents consists of data elements which form the statements of XML

document.

 The XML document might also consists of markup declaration, which act as instructions to

the XML parser

 All XML documents begin with an XML declaration. This declaration identifies that the

document is a XML document and also specifies version number of XML standard.

 It also specifies encoding standard.

<?xml version = “1.0” encoding = “utf-8”?>

 Comments in XML is similar to HTML

 XML names are used to name elements and attributes.

 XML names are case-sensitive.

 There is no limitation on the length of the names.

 All XML document contains a single root element whose opening tag appears on first line of

the code

 All other tags must be nested inside the root element

 As in case of XHTML, XML tags can also have attributes

 The values for the attributes must be in single or double quotation

Example:

 <?xml version = “1.0” encoding = “utf-8”?>

<student>

<name>XYZ</name>

<usn>1CY17MCA01</usn>

</student>

Tags with attributes

The above code can be also written as

<student name = “XYZ” usn = “1CY17MCA01”> </student>

Q8 b) How XML documents can be written with XSLT form explain

An XML document that is to be used as data to an XSLT style sheet must include a processing

instruction to inform the XSLT processor that the style sheet is to be used. The form of this

instruction is as follows:

<?xml-stylesheet type=”text/xsl” href=”XSL_stylesheet_name”?>

An XSLT style sheet is an XML document whose root element is the special-purpose element

stylesheet. The stylesheet tag defines namespaces as its attributes and encloses the collection of

elements that defines its transformations. It also identifies the document as an XSLT document.

<xsl:stylesheet version="1.0"

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

In many XSLT documents, a template is included to match the root node of the XML document.

<xsl:template match="/">

In many cases, the content of an element of the XML document is to be copied to the output

document.

This is done with the value-of element, which uses a select attribute to specify the element of the

XML document whose contents are to be copied. <xsl:value-of select="name"/> The select attribute

can specify any node of the XML document. This is an advantage of XSLT formatting over CSS, in

which the order of data as stored is the only possible order of display.

Q8 c) Differentiate between XML and HTML

Parameter XML HTML

Type of
language

XML is a framework for
specifying markup languages.

HTML is predefined markup
language.

Language type Case sensitive Case insensitive

Structural
details

It is provided It is not provided.

Purpose Transfer of data Presentation of the data

Coding Errors No coding errors are allowed. Small errors are ignored.

Whitespace You can use whitespaces in
your code.

You can't use white spaces in
your code.

Nesting Should be done appropriately. Does not have any effect on the
code.

Driven by XML is content driven HTML is format driven

End of tags The closing tag is essential in a
well-formed XML document.

The closing tag is not always
required. <HTML> tag needs an
equivalent </HTML> tag but

tag does not require </br> tag

Quotes Quotes required around XML
attribute values.

Quotes are not required for the
values of attributes.

Object support Objects have to be expressed
by conventions. Mostly using
attributes and elements.

Offers native object support

Null support Need to use xsi:nil on elements
in an XML instance document
and also need to import the
corresponding namespace.

Natively recognizes the null value.

Namespaces XML provides support for
namespaces. It helps you to
remove the risk of name
collisions when combining with
other documents.

Does not support the concept of
namespaces. Naming collisions
can be avoided either using a
prefix in an object member name
or by nesting objects.

Formatting
decisions

Require more significant effort
to map application types to XML
elements and attributes.

Provides direct mapping for
application data.

Size Documents are mostly lengthy
in size, especially when an
element-centric approach used
in formatting.

The syntax is very brief and yields
formatted text.

Parsing in
Javascript

Requires an XML DOM
implementation and application
code to map text back into
JavaScript objects.

No extra application code required
to parse text. For this purpose,
you can use the eval function of
JavaScript.

Learning curve Very hard as you need to learn
technologies like XPath, XML
Schema, DOM, etc.

HTML is a simple technology
stack that is familiar to developers.

Q9 a) Explain different jquery wrapper

When CSS was introduced to web technologies in order to separate design from content, a way was

needed to refer to groups of page elements from external style sheets. The method developed was

through the use of selectors, which concisely represent elements based upon their attributes or

position within the HTML document.

For example, the selector

p a

refers to the group of all links (<a> elements) that are nested inside a <p> element. jQuery makes

use of the same selectors, supporting not only the common selectors currently used in CSS, but also

the more powerful ones not yet fully implemented by most browsers.

To collect a group of elements, we use the simple syntax

$(selector)

or

jQuery(selector)

For example, to retrieve the group of links nested inside a <p> element, we use the following

$("p a")

The $() function (an alias for the jQuery() function) returns a special Java-Script object containing an

array of the DOM elements that match the selector.

This object possesses a large number of useful predefined methods that can act on the group of

elements.

In programming parlance, this type of construct is termed a wrapper because it wraps the matching

element(s) with extended functionality. The term jQuery wrapper or wrapped set to refer to this set

of matched elements that can be operated on with the methods defined by jQuery.

Example

$("div.notLongForThisWorld").fadeOut();

$("div.notLongForThisWorld").fadeOut().addClass("removed");

Q9 b) Explain the following commands: size(), get(), index(), not(), add()

Q10 a) How attr() command can be used in a different ways in manipulating element.

There are two ways to set attributes onto elements in the wrapped set with jQuery.

Q10 b) Explain the following commands bind(), one(), unbind(), trigger(), eventName()

