

Q1a) Explain the architecture of SIC Program

1) Memory

 Memory consists of 8-bit bytes.

 3 consecutive bytes form a word (24 bits).

 All the address in SIC are byte addresses.

 Words are addressed by the location of their lowest numbered byte.

 There are total of 32,768 bytes in the computer memory.

2) Registers

There are five registers, each 24 bits in length.

3) Data Formats

 Integers are stored as 24 bit binary numbers; 2‟s complement representation is

used for negative values.

 Characters are stored using their 8-bit ASCII codes.

 There is no floating point hardware on the standard version of SIC.

4) Instruction Formats

All machine instructions on the standard version of SIC have the following 24-bit format

The flag bit x is used to indicate indexed addressing mode.

5) Addressing Modes

There are two addressing modes, indicated by the setting of the x bit in the instruction

6) Instruction Set

SIC provides a basic set of instructions that are sufficient for most simple task.

i) Data transfer instruction: This include instructions that load and store registers. Eg.

LDA, LDX, STA, STX.

ii) Arithmetic operation instruction: Basic arithmetic operations that involves register A

Eg. ADD, SUB, MUL, DIV, COMP.

iii) Conditional Branching: Conditional jump instructions test the settings of conditional

code and jump accordingly. Eg. JLT, JGT, JEQ.

iv) Subroutine call Instructions: Perform subroutine linkage. Eg. JSUB, RSUB. Return

address is stored in linkage(L) register.

7) Input and Output

 Input and Output are performed by transferring 1 byte at a time to or from the

rightmost 8 bits of register A (accumulator).

 Each device is assigned a unique 8bit code.

 There are 3 I/O instructions.

 The Test Device (TD) instruction tests whether the addressed device is ready to

send or receive a byte of data. Read Data (RD), Write Data (WD) are used for reading

or writing the data.

Q1b) Explain the following with respect to SIC/XE machine architecture with example i)instruction

format ii) Addressing modes

Instruction Formats

 SIC/XE has larger memory hence instruction format of standard SIC version

is no longer suitable.

 SIC/XE provide two possible options; using relative addressing (Format 3)

and extend the address field to 20 bit (Format 4).

 In addition SIC/XE provides some instructions that do not reference memory

at all. (Format 1 and Format 2).

 The new set of instruction format is as follows. Flag bit e is used to

distinguish between format 3 and format 4. (e=0 means format 3, e=1 means

format 4)

Addressing Modes

Two new relative addressing modes are available for use with instructions assembled using Format 3

Q2a) What are the basic functions of an assembler? Explain the basic assembler directives with

example

In addition to the mnemonic machine instructions assembler uses following assembler directives.

These statements are not translated into machine instructions. Instead they provide instructions to

assembler itself.

1) START

START specify the name and starting address of the program.

Example: START 1000

2) END

Indicate the end of the source program and (optionally) specify the first executable instruction in the

program.

Example: END FIRST

3) BYTE

Generate character or hexadecimal constant, occupying as many bytes as needed to represent the

constant.

Example: BYTE X’F1’

4) WORD

Generate one-word integer constant

Example: THREE WORD 3

5) RESB

Reserve the indicate number of bytes for a data area.

Example: BUFFER RESB 4096

6) RESW

Reserve the indicate number of words for a data area.

Example: LENGTH RESW 1

Q2b) Write an algorithm for pass1 assembler

Q3a) Generate the object code for following program

Q3b) What is relocatable program? Explain the concept of program relocation with an example

and means for implementing it.

It is often desirable to have more than one program at a time sharing the memory and other

resources of the machine.

In such a situation the actual starting address of the program is not known until the load time.

Program in which the address is mentioned during assembling itself. This is called Absolute Assembly

or Absolute Program. Since assembler will not know actual location where the program will get

loaded, it cannot make the necessary changes in the addresses used by the program. However, the

assembler identifies for the loader those parts of the program which need modification.

An object program that has the information necessary to perform this kind of modification is called

the relocatable program.

This can be accomplished with a Modification record having following format:

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, relative to the beginning of the

program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-bytes.

The starting location is the location of the byte containing the leftmost bits of the address field to be

modified. If the field contains an odd number of half-bytes, the starting location begins in the middle

of the first byte.

Example of Program Relocation

 The above diagram shows the concept of relocation. Initially the program is loaded at location

0000. The instruction JSUB is loaded at location 0006.

 The address field of this instruction contains 01036, which is the address of the instruction labelled

RDREC. The second figure shows that if the program is to be loaded at new location 5000.

 The address of the instruction JSUB gets modified to new location 6036. Likewise the third figure

shows that if the program is relocated at location 7420 the JSUB instruction would need to be

changed to 4B108456 that correspond to the new address of RDREC.

 The only part of the program that require modification at load time are those that specify direct

addresses. The rest of the instructions need not be modified. The instructions which doesn‟t require

modification are the ones that is not a memory address (immediate addressing) and PC-relative,

Base-relative instructions.

 From the object program, it is not possible to distinguish the address and constant. The assembler

must keep some information to tell the loader.

 For an address label, its address is assigned relative to the start of the program (START 0). The

assembler produces a Modification record to store the starting location and the length of the

address field to be modified. The command for the loader must also be a part of the object program.

Q4a) write an algorithm for one pass assembler

Q4b) Write a note on MASM assembler

Q5a) What are the functions of a loader?

A loader is a system program that performs the loading function. It brings object program into

memory and starts its execution.

Translator may be assembler/complier, which generates the object program and later loaded to the

memory by the loader for execution.

The translator is specifically an assembler, which generates the object loaded, which becomes input

to the loader.

The different types of loaders are, absolute loader, bootstrap loader, relocating loader (relative

loader), and, direct linking loader.

1. Design of an Absolute Loader

This loader does not need to perform linking and relocation, its operation is very simple.

The Header Record is checked to verify that the correct program has been

presented for loading (and that it will fit into the available memory).

As each Text Record is read, the object code it contains is moved to the

indicated address in the memory.

When the End Record is encountered the loader jumps to the specified

address to begin execution of the loaded program.

Each byte of assembled code is given using its hexadecimal representation in character form. Easy to

read by human beings. Each byte of object code is stored as a single byte. Most machine store object

programs in a binary form.

Algorithm for an absolute loader

Begin

read Header record

verify program name and length

read first Text record

while record type is ≠ ‘E’ do

begin

{if object code is in character form, convert into internal

representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

2. A simple Bootstrap Loader.

When a computer is first turned on or restarted, a special type of absolute

loader, called bootstrap loader is executed. This bootstrap loads the first

program to be run by the computer -- usually an operating system.

The bootstrap itself begins at address 0. It loads the OS starting address 80

No header record or control information, the object code is consecutive

bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

Much of the work of the bootstrap loader is performed by the subroutine

GETC. This subroutine read one character from device F1 and converts it

from the ASCII character code to the value of the hexadecimal digit that is

represented by that character

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

Return

Q5b) write the algorithm for pass one and pass2 of a linking loader. Also explain the data

structures.

Data Structures

1) External Symbol Table (ESTAB)

This table is analogous to SYMTAB

ESTAB is used to stores the name and address of each external symbol in the set of control section

being loaded.

The table also often indicates in which control section the symbol is defined. A Hashed organization

is typically used for this table.

2) Program Load Address (PROGADDR)

PROGADDR is the beginning address in memory where the linked program is to be loaded. Its value

is supplied to the loader by the operating system.

3) Control Section Address (CSADDR)

CSADDR is the starting address assigned to the control section currently being scanned by the

loader. This address is added to all relative address within the control section to convert them to

actual address.

Q6a) Explain the following loader design options i)Linkage Editor ii)Dynamic Linking

Linking Loaders – Perform all linking and relocation at load time.

A linkage editor produces a linked version of the program – often called a load module or an

executable image, which is written to a file or library for later execution.

The linked program produced is generally in a form that is suitable for processing by a relocating

loader.

Linkage editor can perform many useful functions besides simply preparing an object program for

execution.

 produce core image if actual address is known in advance

 improve a subroutine (PROJECT) of a program (PLANNER) without going back to the original

versions of all of the other subroutines

INCLUDE PLANNER(PROGLIB)

DELETE PROJECT {delete from existing PLANNER}

INCLUDE PROJECT(NEWLIB) {include new version}

REPLACE PLANNER(PROGLIB)

external references are retained in the linked program

 Linkage editors can also be used to build packages of subroutines or other control sections that are

generally used together.

Linkage editors often allow the user to specify that external references are not to be resolved by

automatic library search.

Compared to linking loader, Linkage editors in general tend to offer more flexibility and control, with

a corresponding increase in complexity and Overhead

2. Dynamic Linking

The scheme that postpones the linking functions until execution.

A subroutine is loaded and linked to the rest of the program when it is first called.

This type of functions is usually called dynamic linking, dynamic loading or load on call.

The advantages of dynamic linking are, it allow several executing programs to share one copy of a

subroutine or library.

In an object oriented system, dynamic linking makes it possible for one object to be shared by

several programs.

Dynamic linking provides the ability to load the routines only when (and if) they are needed.

The actual loading and linking can be accomplished using operating system service request.

Instead of executing a JSUB instruction that refers to an external symbol, the program makes a load-

and-call service request to the OS.

The OS examines its internal tables to determine whether or not the routine is already loaded.

Control is then passed from the OS to routine being called.

When the called subroutine completes its processing, it returns to its caller.

OS then returns control to the program that issued the request.

Q6b) Write and explain an algorithm for absolute loader

1. Design of an Absolute Loader

This loader does not need to perform linking and relocation, its operation is very simple.

The Header Record is checked to verify that the correct program has been

presented for loading (and that it will fit into the available memory).

As each Text Record is read, the object code it contains is moved to the

indicated address in the memory.

When the End Record is encountered the loader jumps to the specified

address to begin execution of the loaded program.

Each byte of assembled code is given using its hexadecimal representation in character form. Easy to

read by human beings. Each byte of object code is stored as a single byte. Most machine store object

programs in a binary form.

Algorithm for an absolute loader

Begin

read Header record

verify program name and length

read first Text record

while record type is ≠ ‘E’ do

begin

{if object code is in character form, convert into internal

representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

Q7a) Explain Macro Definition and Expansion.

Macro Definition and Expansion: The figure shows the MACRO expansion. The left block shows the
MACRO definition and the right block shows the expanded macro replacing the MACRO call with
its block of executable instruction.
M1 is a macro with two parameters D1 and D2. The MACRO stores the contents of register A in D1
and the contents of register B in D2. Later M1 is invoked with the parameters DATA1 and DATA2,
Second time with DATA4 and DATA3. Every call of MACRO is expended with the executable
statements.

The statement M1 DATA1, DATA2 is a macro invocation statements that gives the name of the
macro instruction being invoked and the arguments (M1 and M2) to be used in expanding. A
macro invocation is referred as a Macro Call or Invocation.
 The program with macros is supplied to the macro processor. Each macro invocation statement
will be expanded into the statement s that form the body of the macro, with the arguments from
the macro invocation substituted for the parameters in the macro prototype. During the
expansion, the macro definition statements are deleted since they are no longer needed. The
arguments and the parameters are associated with one another according to their positions. The
first argument in the macro matches with the first parameter in the macro prototype and so on.

Q7b) Explain Macro Processor algorithm and data structure

Data Structures

DEFTAB (Definition Table)

 Stores the macro definition including macro prototype and macro body

 Comment lines are omitted.

 References to the macro instruction parameters are converted to a positional notation for

efficiency in substituting arguments.

NAMTAB (Name Table)

 Stores macro names

 Serves as an index to DEFTAB

 Pointers to the beginning and the end of the macro definition (DEFTAB)

ARGTAB (Argument Table)

 Stores the arguments according to their positions in the argument list.

 As the macro is expanded the arguments from the Argument table are substituted for the

corresponding parameters in the macro body.

 The figure below shows the different data structures described and their relationship.

Q8a) Explain the following: i)Concatenation of macro parameters ii) Keyword macro parameters

i)Concatenation of macro parameters

Most macro processor allows parameters to be concatenated with other character strings. Suppose

that a program contains a series of variables named by the symbols XA1, XA2, XA3,..., another series

of variables named XB1, XB2, XB3,..., etc. If similar processing is to be performed on each series of

labels, the programmer might put this as a macro instruction.

The parameter to such a macro instruction could specify the series of variables to be operated on (A,

B, etc.). The macro processor would use this parameter to construct the symbols required in the

macro expansion (XA1, Xb1, etc.).

Suppose that the parameter to such a macro instruction is named &ID. The body of the macro

definition might contain a statement like

LDA X&ID1

& is the starting character of the macro instruction; but the end of the parameter is not marked. So

in the case of &ID1, the macro processor could deduce the meaning that was intended.

If the macro definition contains contain &ID and &ID1 as parameters, the situation would be

unavoidably ambiguous. Most of the macro processors deal with this problem by providing a special

concatenation operator. In the SIC macro language, this operator is the character →. Thus the

statement LDA X&ID1 can be written as

ii) Keyword Macro Parameters

Positional parameter:

 parameters and arguments were associated with each other according to

their positions in the macro prototype and the macro invocation statement

 if argument is to be omitted, null value should be used.

 Not suitable if a macro has a large number of parameters and only few of

them has values

Keyword parameters:

 each argument value is written with a keyword that named the corresponding parameter

 Arguments may appear in any order.

 Null arguments no longer need to be used.

 It is easier to read and much less error-prone than the positional method.

Each parameter name is followed by an equal sign, which identifies a keyword parameter

The parameter is assumed to have the default value if its name does not appear in the macro

invocation statement

Q8b) Explain the recursive Macro Expansion

We have seen an example of the definition of one macro instruction by another. But we have not

dealt with the invocation of one macro by another.

The following example shows the invocation of one macro by another macro.

Problem of Recursive Expansion

Previous macro processor design cannot handle such kind of recursive macro invocation and

expansion

The procedure EXPAND would be called recursively, thus the invocation arguments in the ARGTAB

will be overwritten.

The Boolean variable EXPANDING would be set to FALSE when the “inner” macro expansion is

finished, i.e., the macro process would forget that it had been in the middle of expanding an “outer”

macro.

Solutions

Write the macro processor in a programming language that allows recursive calls, thus local

variables will be retained.

If you are writing in a language without recursion support, use a stack to take care of pushing and

popping local variables and return addresses.

The procedure EXPAND would be called when the macro was recognized. The arguments from the

macro invocation would be entered into ARGTAB as follows:

The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro invocation

statement would begin.

The processing would proceed normally until statement invoking RDCHAR is processed. This time,

ARGTAB would look like at the expansion, when the end of RDCHAR is recognized, EXPANDING

would be set to FALSE.

Thus the macro processor would „forget‟ that it had been in the middle of expanding a macro when

it encountered the RDCHAR statement. In addition, the arguments from the original macro

invocation (RDBUFF) would be lost because the value in ARGTAB was overwritten with the

arguments from the invocation of RDCHAR.

Q9a) Explain recursion descent parsing. Write recursive descent parse for ‘READ’ statement

A top-down method which is known as recursive descent is made up of procedures for each non-

terminal symbol in the grammar.

When a procedure is called, it attempts to find a substring of the input, beginning with the current

token that can be interpreted as the non-terminal with which the procedure is associated.

In the process of doing this, it may call other procedures or even call itself recursively, to search for

other non-terminals. If a procedure finds the non-terminal that is its goal, it returns an indication of

success to its caller. It also advances the current-token pointer past the substring it has just

recognized.

If the procedure is unable to find a substring that can be interpreted as the desired non-terminal it

returns and indication of failure or invokes an error diagnosis and recovery routine.

The procedure is only slightly more complicated when there are several alternatives defined by the

grammar for a non-terminal. In that case, the procedure must decide which of the alternatives to

try. For the recursive descent technique, it must be possible to decide which alternative to use by

examining the next input token. There are other top-down methods that remove this requirement;

however, they are not as efficient as recursive descent.

Example: consider following rule of grammar.

<assign>:= id:=<exp>

Q9b) Indicate whether the finite automation given recognize the following strings

i)9Alpha Not recognized

ii)Num-2 Recognized

iii)-Hello Not recognized

iv) aaa-8- Not recognized

Q9c) Define the following terms: i) Grammer ii)Lexical analysis

Grammar

A grammar for programming language is formal description of the syntax, or form, of programs and

individual statements written in the language. The grammar does not describe the semantics or

meaning of the various statements; consider the two statements.

I := J+K

And

X := Y+I

Where X and Y are REAL variables and I, J, K are INTEGER variables. These two statements have

identical syntax. However, the semantics of the two statements are quite different. First one

specifies integer arithmetic operation. Second one specifies floating point addition. However they

will be described same way by the grammar.

A number of different notation can be used for writing grammars. One of the notation is BNF(for

Backus-Naur Form). BNF is not the most powerful syntax description tool available, but have the

advantage of being simple and widely used, and it provides capabilities that are sufficient for most

purposes.

A BNF grammar contains set of rules each of which defines the syntax of some construct in the

programming language.

Example:

Lexical Analysis

Lexical analysis involves scanning the program to be compiled and recognizing the tokens that make

up the source statements. Scanners are usually designed to recognize keywords, operators, and

identifiers as well as integers, floating-point numbers, character strings, and other similar items that

are written as part of the source program. The exact set of tokens to be recognized, of course,

depends upon the programming language being compiled and the grammar being used to describe

it.

For example, an identifier might be defined by the rules.

<ident> ::= <letter>|<ident> <letter>|<ident><digit>

<letter> ::= A|B|C|D|....|Z

<digit> ::= 0|1|2|3|....|9

In such case the scanner would recognize as tokens the single characters A,B,0,1 and so on. The

parser would interpret a sequence of such characters as the language construct <ident>. However,

this approach would require the parser to recognize simple identifiers using general parsing

techniques. A special purpouse routine can perform this same function much more efficiently.

The output of the scanner consists of a sequence of tokens, For efficiency of later use, each token is

usually represented by some fixed-length code, such as integer, rather than a variable length

character string.

When the token being scanned is a keyword or an operator, such coding scheme gives sufficient

information. In the case of identifier, however, it is also necessary to specify the particular identifier

name that was scanned. The same is accomplished by associating a token specifier with the type

code for such tokens.

This specifier gives the identifier name, integer value etc., that was found by the scanner.

In addition to its primary function of recognizing tokens, the scanner usually is responsible for

reading the lines of the source program as needed, and possibly for printing the source listing.

Comments are ignored by the scanner, except for printing on the output listing so they are

effectively removed from the source statements before parsing begins.

Q10 a) By using the BNF grammar below represent the syntax analysis of the PASCAL statement.

Q10b) Briefly discuss different machine dependent code optimization techniques.

1) Assignment and use of registers

General purpose register are used for various purpose like storing values or intermediate result or

for addressing (base register, index register).

Registers are also used as instruction operands. Machine instructions that use registers as operands

are usually faster than the corresponding instruction that refer to location in memory. Therefore it is

preferable to store value or intermediate results in registers.

There are rarely as many registers available as we would like to use. The problem then becomes one

of selecting which register value to replace when it is necessary to assign a register for some other

purpose.

One approach is to scan the program and the value that is not needed for longest time will be

replaced. If the register that is being reassigned contains the value of some variable already stored in

memory, the can value can be simply discarded. Otherwise this value must be saved using

temporary variable

Second approach is to divide the program into basic blocks. A basic block is a sequence of

quadruples with one entry point, which is at the beginning of the block, one exit point, which is at

the end of the block and no jumps within the block. When control passes from one block to another

all the values are stored in temporary variables.

2) Rearranging quadruples before machine code is generated.

3) Taking advantage of specific characteristics and instructions of the target machine

For example there may be special loop-control instructions or addressing modes that can be used to

create more efficient object code.

On some computers there are high level machines instructions that can perform complicated

functions such as calling procedures and manipulating data structures in single operations.

Use of such feature can greatly improve the efficiency of the object program.

CPU is made of several functional units. On such system machine instruction order can affect speed

of execution. Consecutive instructions that require different functional unit can be executed at the

same time.

