

Q1a:

Ans:

Error—People make errors. A good synonym is mistake. When people make mistakes while coding,

we call these mistakes bugs. Errors tend to propagate; a requirements error may be magnified during

design and amplified still more during coding.

Fault—A fault is the result of an error. It is more precise to say that a fault is the representation of an

error, where representation is the mode of expression, such as narrative text, Unified Modeling

Language diagrams, hierarchy charts, and source code. Defect is a good synonym for fault, as is bug.

Faults can be elusive. An error of omission results in a fault in which something is missing that should

be present in the representation. This suggests a useful refinement; we might speak of faults of

commission and faults of omission. A fault of commission occurs when we enter something into a

representation that is incorrect. Faults of omission occur when we fail to enter correct information. Of

these two types, faults of omission are more difficult to detect and resolve.

Failure—A failure occurs when the code corresponding to a fault executes. Two subtleties arise here:

one is that failures only occur in an executable representation, which is usually taken to be source

code, or more precisely, loaded object code; the second subtlety is that this definition relates failures

only to faults of commission. How can we deal with failures that correspond to faults of omission? We

can push this still further: what about faults that never happen to execute, or perhaps do not execute for

a long time? Reviews prevent many failures by finding faults; in fact, well-done reviews can find

faults of omission.

1b:

Ans:

 Testing is the process of determining if a program has any errors.

When testing reveals an error, the process used to determine the cause of this error and to remove it,

is known as debugging.

2a:

Ans:

2 b:

Ans: Test generation techniques described belong to the black-box testing category.

These techniques are useful during functional testing where the objective is to test whether or not an

application, unit, system, or subsystem, correctly implements the functionality as per the given

requirements

Equivalence partitioning: Test selection using equivalence partitioning allows a tester to subdivide the

input domain into a relatively small number of sub-domains, say N>1, as shown (next slide (a)).

Errors at the boundaries: Experience indicates that programmers make mistakes in processing values at

and near the boundaries of equivalence classes.

Predicates Testing : BOR and BRO for generating tests that are guaranteed to detect certain faults in

the coding of conditions. The conditions from which tests are generated might arise from requirements or

might be embedded in the program to be tested.

Q 3 a:

Ans:

Error—People make errors. A good synonym is mistake. When people make mistakes while coding,

we call these mistakes bugs. Errors tend to propagate; a requirements error may be magnified during

design and amplified still more during coding.

Fault—A fault is the result of an error. It is more precise to say that a fault is the representation of an

error, where representation is the mode of expression, such as narrative text, Unified Modeling

Language diagrams, hierarchy charts, and source code. Defect is a good synonym for fault, as is bug.

Faults can be elusive. An error of omission results in a fault in which something is missing that should

be present in the representation. This suggests a useful refinement; we might speak of faults of

commission and faults of omission. A fault of commission occurs when we enter something into a

representation that is incorrect. Faults of omission occur when we fail to enter correct information. Of

these two types, faults of omission are more difficult to detect and resolve.

Failure—A failure occurs when the code corresponding to a fault executes. Two subtleties arise here:

one is that failures only occur in an executable representation, which is usually taken to be source

code, or more precisely, loaded object code; the second subtlety is that this definition relates failures

only to faults of commission. How can we deal with failures that correspond to faults of omission? We

can push this still further: what about faults that never happen to execute, or perhaps do not execute for

a long time? Reviews prevent many failures by finding faults; in fact, well-done reviews can find

faults of omission.

Incident—When a failure occurs, it may or may not be readily apparent to the user (or customer or

tester). An incident is the symptom associated with a failure that alerts the user to the occurrence of a

failure.

Test is the process of determining if a program has any errors.

Test Case:A test case is a pair of input data and the corresponding program output.Test data are a set of

values: one for each input variable.A test set sometimes referred as test suite is a collection of test

cases.Test data is an alternate term for test set.Program requirements and test plan help in construction of

test data.

3 b:

Ans:

The SATM system communicates with bank customers via the 15 screens. Using a terminal with features

as shown in Figure 2.3, SATM customers can select any of three transaction types: deposits, withdrawals,

and balance inquiries. For simplicity, these transactions can only be done on a checking account.

When a bank customer arrives at an SATM station, screen 1 is displayed. The bank customer

accesses the SATM system with a plastic card encoded with a personal account number (PAN), which is a

key to an internal customer account file, containing, among other things, the customer’s name and

account information. If the customer’s PAN matches the information in the customer account file, the

system presents screen 2 to the customer. If the customer’s PAN is not found, screen 4 is displayed, and

the card is kept.

At screen 2, the customer is prompted to enter his or her personal identification number (PIN).

If the PIN is correct (i.e., matches the information in the customer account file), the system displays

screen 5; otherwise, screen 3 is displayed. The customer has three chances to get the PIN correct; after

three failures, screen 4 is displayed, and the card is kept. On entry to screen 5, the customer selects the

desired transaction from the options shown on screen. If balance is requested, screen 14 is then displayed.

If a deposit is requested, the status of the deposit envelope slot is determined from a field in the terminal

control file. If no problem is known, the system displays screen 7 to get the transaction amount.

Q4a:

Ans:

#include<stdio.h>

int main()

{

int a,b,c;

char istriangle;

printf("enter 3 integers which are sides of triangle\n");
scanf("%d%d%d",&a,&b,&c);
printf("a=%d\t,b=%d\t,c=%d",a,b,c);

// to check is it a triangle or not

if(a<b+c && b<a+c && c<a+b)

istriangle='y';

else

istriangle ='n';

;

if (istriangle=='y')

if ((a==b) && (b==c))

printf("equilateral triangle\n");

else if ((a!=b) && (a!=c) && (b!=c))

printf("scalene triangle\n");

else

printf("isosceles triangle\n");

else

printf("Not a triangle\n");

return 0;

}

4 b:

Ans:

BVA test case for two variables functions

In the general application of Boundary Value Analysis can be done in a uniform manner.

The basic form of implementation is to maintain all but one of the variables at their

nominal (normal or average) values and allowing the remaining variable to take on its

extreme values. The values used to test the extremities are:

•Min ------------------------------------ - Minimal

•Min+ ------------------------------------ - Just above Minimal

•Nom ------------------------------------ - Average

•Max- ------------------------------------ - Just below Maximum

•Max ------------------------------------ - Maximum

Limitations of BVA

Boundary Value Analysis works well when the Program Under Test (PUT) is a “function of several

independent variables that represent bounded physical quantities” [1]. When these conditions are met

BVA works well but when they are not we can find deficiencies in the results. For example the NextDate

problem, where Boundary Value Analysis would place an even testing regime equally over the range,

tester’s intuition

and common sense shows that we require more emphasis towards the end of February or on leap years.

The reason for this poor performance is that BVA cannot compensate or take into consideration the nature

of a function or the dependencies between its variables.

Equivalence Class Test

EC Testing is when you have a number of test items (e.g. values) that you want to test but because of cost

(time/money) you do not have time to test them all. Therefore you group the test item into class where all

items in each class are suppose to behave exactly the same. The theory is that you only need to test one of

each item to make sure the system works.

Example 1

Children under 2 ride the buss for free. Young people pay $10, Adults $15 and Senior Citizen pay $5.

Classes:

Price:0 -> Age:0-1

Price:10 -> Age:2-14

Price:15 -> Age:15-64

Price:5 -> Age:65-infinity

Example 2 (more than one parameter)

Cellphones K80, J64 and J54 run Java 5. K90 and J99 run Java 6. But there are two possible browsers

FireFox and Opera, J models run FF and K models run O.

Classes:

Browser:FF, Java:5 -> Phones:J64,J54

Browser:FF, Java:6 -> Phones:J99

Browser:O, Java:5 -> Phones:K80

Browser:O, Java:6 -> Phones:K90

 Q5a:

BVA test case for two variables functions

In the general application of Boundary Value Analysis can be done in a uniform manner.

The basic form of implementation is to maintain all but one of the variables at their

nominal (normal or average) values and allowing the remaining variable to take on its

extreme values. The values used to test the extremities are:

•Min ------------------------------------ - Minimal

•Min+ ------------------------------------ - Just above Minimal

•Nom ------------------------------------ - Average

•Max- ------------------------------------ - Just below Maximum

•Max ------------------------------------ - Maximum

Limitations of BVA

Boundary Value Analysis works well when the Program Under Test (PUT) is a “function of several

independent variables that represent bounded physical quantities” [1]. When these conditions are met

BVA works well but when they are not we can find deficiencies in the results. For example the NextDate

problem, where Boundary Value Analysis would place an even testing regime equally over the range,

tester’s intuition

and common sense shows that we require more emphasis towards the end of February or on leap years.

The reason for this poor performance is that BVA cannot compensate or take into consideration the nature

of a function or the dependencies between its variables.

5 b:

Equivalence Class Test

EC Testing is when you have a number of test items (e.g. values) that you want to test but because of cost

(time/money) you do not have time to test them all. Therefore you group the test item into class where all

items in each class are suppose to behave exactly the same. The theory is that you only need to test one of

each item to make sure the system works.

Example 1

Children under 2 ride the buss for free. Young people pay $10, Adults $15 and Senior Citizen pay $5.

Classes:

Price:0 -> Age:0-1

Price:10 -> Age:2-14

Price:15 -> Age:15-64

Price:5 -> Age:65-infinity

Q6 a:

Ans:

we might postulate the following equivalence classes:

M1 = {month: month has 30 days}

M2 = {month: month has 31 days}

M3 = {month: month is February}

D1 = {day: 1 ≤ day ≤ 28}

D2 = {day: day = 29}

D3 = {day: day = 30}

D4 = {day: day = 31}

Y1 = {year: year = 2000}

Y2 = {year: year is a non-century leap year}

Y3 = {year: year is a common year}

By choosing separate classes for 30- and 31-day months, we simplify the question of the last

day of the month. By taking February as a separate class, we can give more attention to leap year

questions. We also give special attention to day values: days in D1 are (nearly) always incremented,

while days in D4 only have meaning for months in M2. Finally, we have three classes of years, the

special case of the year 2000, leap years, and non-leap years. This is not a perfect set of equivalence

classes, but its use will reveal many potential errors.

These classes yield the following weak normal equivalence class test cases

strong normal equivalence class test cases for the revised classes are as follows:

6 b:

We can use a following set of equivalence classes.

Ans: M1 = {month: month has 30 days}

M2 = {month: month has 31 days except December}

M3 = {month: month is December}

M4 = {month: month is February}

D1 = {day: 1 ≤ day ≤ 27}

D2 = {day: day = 28}

D3 = {day: day = 29}

D4 = {day: day = 30}

D5 = {day: day = 31}

Y1 = {year: year is a leap year}

Y2 = {year: year is a common year}

Q7a:

Ans:

7 b:

Ans:

Q8 a:

Ans:

Define/Use Test Coverage Metrics

The whole point of analyzing a program with definition/use paths is to define a set of test coverage

metrics known as the Rapps–Weyuker data flow metrics (Rapps and Weyuker, 1985). The first

three of these are equivalent to three of E.F. Miller’s metrics in Chapter 8: All-Paths, All-Edges,

and All-Nodes. The others presume that define and usage nodes have been identified for all program

variables, and that du-paths have been identified with respect to each variable. In the following

definitions, T is a set of paths in the program graph G(P) of a program P, with the set V of

variables. It is not enough to take the cross product of the set of DEF nodes with the set of USE

nodes for a variable to define du-paths. This mechanical approach can result in infeasible paths. In

the next definitions, we assume that the define/use paths are all feasible.

Definition

The set T satisfies the All-Defs criterion for the program P if and only if for every variable v ∈ V, T

contains definition-clear paths from every defining node of v to a use of v.

Definition

The set T satisfies the All-Uses criterion for the program P if and only if for every variable v ∈ V, T

contains definition-clear paths from every defining node of v to every use of v, and to the successor

node of each USE(v, n).

Definition

The set T satisfies the All-P-Uses/Some C-Uses criterion for the program P if and only if for every

variable v ∈ V, T contains definition-clear paths from every defining node of v to every predicate

use of v; and if a definition of v has no P-uses, a definition-clear path leads to at least one computation

use.

Definition

The set T satisfies the All-C-Uses/Some P-Uses criterion for the program P if and only if for every

variable v ∈ V, T contains definition clear paths from every defining node of v to every computation

use of v; and if a definition of v has no C-uses, a definition-clear path leads to at least one

predicate use.

Definition

The set T satisfies the All-DU-paths criterion for the program P if and only if for every variable

v ∈ V, T contains definition-clear paths from every defining node of v to every use of v and to the

successor node of each USE(v, n), and that these paths are either single loop traversals or they are

cycle free.

These test coverage metrics have several set-theory-based relationships, which are referred to as

“subsumption” in Rapps and Weyuker (1985). These relationships are shown in Figure 9.5. We

now have a more refined view of structural testing possibilities between the extremes of the (typically

unattainable) All-Paths metric and the generally accepted minimum, All-Edges. What good

is all this? Define/use testing provides a rigorous, systematic way to examine points at which faults

may occur.

8 b:

Ans:

Top–down integration begins with the main program (the root of the tree). Any lower-level unit

that is called by the main program appears as a “stub,” where stubs are pieces of throwaway

code that emulate a called unit. If we performed top–down integration testing for the Calendar

program, the first step would be to develop stubs for all the units called by the main program—

isLeap, weekDay, getDate, zodiac, nextDate, friday13th, and memorialDay. In a stub for any unit,

the tester hard codes in a correct response to the request from the calling/invoking unit. In the

stub for zodiac, for example, if the main program calls zodiac with 05, 27, 2012, zodiacStub would

return “Gemini.” In extreme practice, the response might be “pretend zodiac returned Gemini.”

Once the main program has been tested, we replace one stub at a time, leaving the others as

stubs.

Bottom–Up Integration

Bottom–up integration is a “mirror image” to the top–down order, with the difference that stubs

are replaced by driver modules that emulate units at the next level up in the tree. (In Figure 13.4,

the gray units are drivers.) Bottom–up integration begins with the leaves of the decomposition

tree, and use a driver version of the unit that would normally call it to provide it with test cases.

Sandwich Integration

Sandwich integration is a combination of top–down and bottom–up integration.

Q 9 a:

Ans:

Mutation testing (or mutation analysis or program mutation) is used to design new software tests and

evaluate the quality of existing software tests. Mutation testing involves modifying a program in small

ways.

Mutation analysis is the most common form of software fault-based testing. A fault model is used to

produce hypothetical faulty programs by creating variants of the program under test. Variants are created

by “seeding” faults, that is, by making a small change to the program under test following a pattern in the

fault model. The patterns ∆ mutation operator for changing program text are called mutation operators,

and each variant program is ∆ mutant called a mutant.

Mutants should be plausible as faulty programs. Mutant programs that are rejected by a compiler, or

which fail almost all tests, are not good models of the faults we seek ∆ valid mutant to uncover with

systematic testing. We say a mutant is valid if it is syntactically ∆ useful mutant correct. We say a mutant

is useful if, in addition to being valid, its behavior differs from the behavior of the original program for no

more than a small subset of program test cases.

Fault Based Adequacy Criteria:

Adequacy criteria • Adequacy criterion = set of test obligations • A test suite satisfies an adequacy

criterion if – all the tests succeed (pass) – every test obligation in the criterion is satisfied by at least one

of the test cases in the test suite. – Example: the statement coverage adequacy criterion is satisfied by test

suite S for program P if each executable statement in P is executed by at least one test case in S, and the

outcome of each test execution was “pass”.

● Create tests to cover faults that could possibly occur in the software. ● Introduce mutations into the

code. ● See if the tests detect the mutations.

9 b:

Ans: How general should scaffolding be? To answer

 We could build a driver and stubs for each test case or at least factor out some common code of the

driver and test management (e.g., JUnit)

 ... or further factor out some common support code, to drive a large number of test cases from data... or

further, generate the data automatically from a more abstract model (e.g., network traffic model)

 Fully generic scaffolding may suffice for small numbers of hand-written test cases

 The simplest form of scaffolding is a driver program that runs a single, specific test case.

 It is worthwhile to write more generic test drivers that essentially interpret test case specifications.

 A large suite of automatically generated test cases and a smaller set of handwritten test cases can share

the same underlying generic test scaffolding

 Scaffolding to replace portions of the system is somewhat more demanding and again both generic and

application-specific approaches are possible

 A simplest stub – mock – can be generated automatically by analysis of the source code

 The balance of quality, scope and cost for a substantial piece of scaffolding software can be used in

several projects

 The balance is altered in favour of simplicity and quick construction for the many small pieces of

scaffolding that are typically produced during development to support unit and small-scale integration

testing

 A question of costs and re-use – Just as for other kinds of software

Q10 a:

Ans: Quality Risk Management is the set of leadership, business process, culture, and technology

capabilities an organizations establishes to create a collaborative approach for for identifying, quantifying,

and mitigating product, operational, supplier, and supply chain risks that can impact quality.

Risk Planning:

Planning risks and contingencies

What are the overall risks to the project with an emphasis on the testing process?

Lack of personnel resources when testing is to begin.

Lack of availability of required hardware, software, data or tools.

Late delivery of the software, hardware or tools.

Delays in training on the application and/or tools.

Changes to the original requirements or designs.

Complexities involved in testing the applications

Specify what will be done for various events, for example: Requirements definition will be complete by

January 1, 20XX, and, if the requirements change after that date, the following actions will be taken:

The test schedule and development schedule will move out an appropriate number of days. This rarely

occurs, as most projects tend to have fixed delivery dates.

The number of tests performed will be reduced.

The number of acceptable defects will be increased.

Resources will be added to the test team.

The test team will work overtime (this could affect team morale).

The scope of the plan may be changed.

There may be some optimization of resources. This should be avoided, if possible, for obvious reasons.

10 b:

Ans: Test documentation is documentation of artifacts created before or during the testing of software. It

helps the testing team to estimate testing effort needed, test coverage, resource tracking, execution

progress, etc. It is a complete suite of documents that allows you to describe and document test planning,

test design, test execution, test results that are drawn from the testing activity.

Testing activities generally consume 30% to 50% of software development project effort.

Documentations help to identify Test process improvement that can be applied to future projects.

Examples of Test Documentation

Here, are

important

Types of Test

Documentati

on:

Advantages

of Test

Documentati

on

 The

main reason

behind

creating test

documentatio

n is to either

reduce or

remove any

uncertainties

about the

testing

activities.

Helps you to

remove

ambiguity

which often

arises when it

comes to the

allocation of

tasks

 Docu

mentation

not only

offers a

systematic

approach to

software

testing, but it

also acts as

training

material to

freshers in

the software

testing

process

 It is

also a good

marketing &

Types of Testing Description

Test policy It is a high-level document which describes principles, methods

and all the important testing goals of the organization.

Test strategy A high-level document which identifies the Test Levels (types)

to be executed for the project.

Test plan A test plan is a complete planning document which contains

the scope, approach, resources, schedule, etc. of testing

activities.

Requirements Traceability

Matrix

This is a document which connects the requirements to the test

cases.

Test Scenario Test scenario is an item or event of a software system which

could be verified by one or more Test cases.

Test case It is a group of input values, execution preconditions, expected

execution postconditions and results. It is developed for a Test

Scenario.

Test Data Test Data is a data which exists before a test is executed. It

used to execute the test case.

Defect Report Defect report is a documented report of any flaw in a Software

System which fails to perform its expected function.

Test summary report Test summary report is a high-level document which

summarizes testing activities conducted as well as the test

result.

sales strategy to showcase Test Documentation to exhibit a mature testing process

 Test documentation helps you to offer a quality product to the client within specific time limits

 In Software Engineering, Test Documentation also helps to configure or set-up the program

through the configuration document and operator manuals

 Test documentation helps you to improve transparency with the client

	Examples of Test Documentation
	Advantages of Test Documentation

