
Subject : Cloud Computing (16MCA51)
Branch : MCA
Semester : V Sem
Faculty Name : Ms. Moumita Roy

1 Explain with a diagram the evaluation of computing platform.

Computer technology has gone through five generations of development, with each generation lasting from 10 to 20 years.

Successive generations are overlapped in about 10 years. For instance, from 1950 to 1970, a handful of mainframes, including the

IBM 360 and CDC 6400, were built to satisfy the demands of large businesses and government organizations. From 1960 to 1980,

lower-cost mini-computers such as the DEC PDP 11 and VAX Series became popular among small businesses and on college

campuses.
From 1970 to 1990, we saw widespread use of personal computers built with VLSI microprocessors. From 1980 to 2000, massive
numbers of portable computers and pervasive devices appeared in both wired and wireless applications. Since 1990, the use of
both HPC and HTC systems hidden in clusters, grids, or Internet clouds has proliferated. These systems are employed by both
consumers and high-end web-scale computing and information services.

The general computing trend is to leverage shared web resources and massive amounts of data over the Internet. The figure

above illustrates the evolution of HPC and HTC systems. On the HPC side, supercomputers (massively parallel processors or MPPs)

are gradually replaced by clusters of cooperative computers out of a desire to share computing resources. The cluster is often a

collection of homogeneous compute nodes that are physically connected in close range to one another.
On the HTC side, peer-to-peer (P2P) networks are formed for distributed file sharing and content delivery applications. A P2P
system is built over many client machines. Peer machines are globally distributed in nature. P2P, cloud computing, and web service
platforms are more focused on HTC applications than on HPC applications. Clustering and P2P technologies lead to the
development of computational grids or data grids.

2. Distinguish the different computing paradigms.

 Centralized computing This is a computing paradigm by which all computer resources are centralized in one physical system. All

resources (processors, memory, and storage) are fully shared and tightly coupled within one integrated OS. Many data centers

and supercomputers are centralized systems, but they are used in parallel, distributed, and cloud computing applications.
 Parallel computing In parallel computing, all processors are either tightly coupled with centralized shared memory or loosely

coupled with distributed memory. Some authors refer to this discipline as parallel processing. Interprocessor communication is

accomplished through shared memory or via message passing. A computer system capable of parallel computing is commonly

known as a parallel computer. Programs running in a parallel computer are called parallel programs. The process of writing

parallel programs is often referred to as parallel programming.
 Distributed computing This is a field of computer science/engineering that studies distributed systems. A distributed system

consists of multiple autonomous computers, each having its own private memory, communicating through a computer network.

Information exchange in a distributed system is accomplished through message passing. A computer program that runs in a

distributed system is known as a distributed program. The process of writing distributed programs is referred to as distributed

programming.
 Cloud computing An Internet cloud of resources can be either a centralized or a distributed computing system. The cloud

applies parallel or distributed computing, or both. Clouds can be built with physical or virtualized resources over large data

centers that are centralized or distributed. Some authors consider cloud computing to be a form of utility computing or service

computing.

3. Discuss the hype-cycle of new technologies. Assist the answer with a diagram.

Any new and emerging computing and information technology may go through a hype cycle, as illustrated in the figure above. This

cycle shows the expectations for the technology at five different stages. The expectations rise sharply from the trigger period to a

high peak of inflated expectations. Through a short period of disillusionment, the expectation may drop to a valley and then

increase steadily over a long enlightenment period to a plateau of productivity. The number of years for an emerging technology to

reach a certain stage is marked by special symbols. The hollow circles indicate technologies that will reach mainstream adoption in

two years. The gray circles represent technologies that will reach mainstream adoption in two to five years. The solid circles

represent those that require five to 10 years to reach mainstream adoption, and the triangles denote those that require more than

10 years. The crossed circles represent technologies that will become obsolete before they reach the plateau.
The hype cycle in the figure shows the technology status as of August 2010. For example, at that time consumer-generated

media was at the disillusionment stage, and it was predicted to take less than two years to reach its plateau of adoption. Internet

micropayment systems were forecast to take two to five years to move from the enlightenment stage to maturity. It was believed

that 3D printing would take five to 10 years to move from the rising expectation stage to mainstream adoption, and mesh network

sensors were expected to take more than 10 years to move from the inflated expectation stage to a plateau of mainstream

adoption.
Also as shown in figure, the cloud technology had just crossed the peak of the expectation stage in 2010, and it was expected to

take two to five more years to reach the productivity stage. However, broadband over power line technology was expected to

become obsolete before leaving the valley of disillusionment stage in 2010. Many additional technologies (denoted by dark circles)

were at their peak expectation stage in August 2010, and they were expected to take five to 10 years to reach their plateau of

success. Once a technology begins to climb the slope of enlightenment, it may reach the productivity plateau within two to five

years. Among these promising technologies are the clouds, biometric authentication, interactive TV, speech recognition, predictive

analytics, and media tablets.

4. Explain the concepts of IoT and CPS.

Internet of Things
The traditional Internet connects machines to machines or web pages to web pages. The concept of the IoT was introduced in 1999
at MIT. The IoT refers to the networked interconnection of everyday objects, tools, devices, or computers. One can view the IoT as
a wireless network of sensors that interconnect all things in our daily life. These things can be large or small and they vary with
respect to time and place. The idea is to tag every object using RFID or a related sensor or electronic technology such as GPS.

With the introduction of the IPv6 protocol, 2
128

 IP addresses are available to distinguish all the objects on Earth, including all
computers and pervasive devices. The IoT researchers have estimated that every human being will be surrounded by 1,000 to 5,000
objects. The IoT needs to be designed to track 100 trillion static or moving objects simultaneously. The IoT demands universal
addressability of all of the objects or things. To reduce the complexity of identification, search, and storage, one can set the
threshold to filter out fine-grain objects. The IoT obviously extends the Internet and is more heavily developed in Asia and
European countries.

In the IoT era, all objects and devices are instrumented, interconnected, and interacted with each other intelligently. This

communication can be made between people and things or among the things themselves. Three communication patterns co-exist:

namely H2H (human-to-human), H2T (human-to-thing), and T2T (thing-to-thing). Here things include machines such as PCs and

mobile phones. The idea here is to connect things (including human and machine objects) at any time and any place intelligently

with low cost. Any place connections include at the PC, indoor (away from PC), outdoors, and on the move. Any time connections

include daytime, night, outdoors and indoors, and on the move as well.
The dynamic connections will grow exponentially into a new dynamic network of networks, called the Internet of Things (IoT).

The IoT is still in its infancy stage of development. Many proto-type IoTs with restricted areas of coverage are under

experimentation at the time of this writing. Cloud computing researchers expect to use the cloud and future Internet technologies

to support fast, efficient, and intelligent interactions among humans, machines, and any objects on Earth. A smart Earth should

have intelligent cities, clean water, efficient power, convenient transportation, good food supplies, responsible banks, fast

telecommunications, green IT, better schools, good health care, abundant resources, and so on. This dream living environment may

take some time to reach fruition at different parts of the world.

Cyber Physical Systems

A cyber-physical system (CPS) is the result of interaction between computational processes and the physical world. A CPS integrates

“cyber” (heterogeneous, asynchronous) with “physical” (concur-rent and information-dense) objects. A CPS merges the “3C”
technologies of computation, communication, and control into an intelligent closed feedback system between the physical world

and the information world, a concept which is actively explored in the United States. The IoT emphasizes various networking

connections among physical objects, while the CPS emphasizes exploration of virtual reality (VR) applications in the physical world.

We may transform how we interact with the physical world just like the Internet transformed how we interact with the virtual

world.

5 Classify parallel and distributed systems.

 Computer Peer-to-Peer Data/
Functionality, Clusters Networks Computational Cloud Platforms
Applications Grids

Architecture, Network of Flexible network Heterogeneous Virtualized cluster
Network compute nodes of client machines clusters of servers over
Connectivity, and interconnected by logically interconnected by data centers via
Size SAN, LAN, or connected by an high-speed SLA

 WAN overlay network network links over
 hierarchically selected resource
 sites

Control and Homogeneous Autonomous Centralized Dynamic resource
Resources nodes with client nodes, free control, server- provisioning of
Management distributed in and out, with oriented with servers, storage,

 control, running self-organization authenticated and networks
 UNIX or Linux security

Applications and High-performance Most appealing to Distributed Upgraded web
Network-centric computing, business file supercomputing, search, utility
Services search engines, sharing, content global problem computing, and

 and web services, delivery, and solving, and data outsourced
 etc. social networking center services computing
 services

Representative Google search Gnutella, eMule, TeraGrid, Google App
Operational engine, SunBlade, BitTorrent, GriPhyN, UK Engine, IBM
Systems IBM Road Napster, KaZaA, EGEE, D-Grid, Bluecloud, AWS,

 Runner, Cray Skype, JXTA ChinaGrid, etc. and Microsoft

 XT4, etc. Azure

6. Explain Cluster Architecture and SSI.

The figure above shows the architecture of a typical server cluster built around a low-latency, high-bandwidth interconnection

network. This network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g., Ethernet). To build a larger cluster with more nodes,

the interconnection network can be built with multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches. Through

hierarchical construction using a SAN, LAN, or WAN, one can build scalable clusters with an increasing number of nodes. The cluster

is connected to the Internet via a virtual private network (VPN) gateway. The gateway IP address locates the cluster. The system

image of a computer is decided by the way the OS manages the shared cluster resources. Most clusters have loosely coupled node

computers. All resources of a server node are managed by their own OS. Thus, most clusters have multiple system images as a

result of having many autonomous nodes under different OS control.

Single-System Image
Greg Pfister has indicated that an ideal cluster should merge multiple system images into single-system image (SSI). Cluster
designers desire a cluster operating system or some middle-ware to support SSI at various levels, including the sharing of CPUs,
memory, and I/O across all cluster nodes. An SSI is an illusion created by software or hardware that presents a collection of
resources as one integrated, powerful resource. SSI makes the cluster appear like a single machine to the user. A cluster with
multiple system images is nothing but a collection of independent computers.

7. What is the hardware, software and middleware support needed to form a cluster?

Clusters exploring massive parallelism are commonly known as MPPs. Almost all HPC clusters in the Top 500 list are also MPPs. The

building blocks are computer nodes (PCs, workstations, servers, or SMP), special communication software such as PVM or MPI, and

a network interface card in each computer node. Most clusters run under the Linux OS. The computer nodes are interconnected by

a high-bandwidth network (such as Gigabit Ethernet, Myrinet, InfiniBand, etc.).
Special cluster middleware supports are needed to create SSI or high availability (HA). Both sequential and parallel applications can
run on the cluster, and special parallel environments are needed to facilitate use of the cluster resources. For example, distributed
memory has multiple images. Users may want all distributed memory to be shared by all servers by forming distributed shared
memory (DSM). Many SSI features are expensive or difficult to achieve at various cluster operational levels. Instead of achieving
SSI, many clusters are loosely coupled machines. Using virtualization, one can build many virtual clusters dynamically, upon user
demand.

8. Discuss the characteristics of a P2P system.

In a P2P system, every node acts as both a client and a server, providing part of the system resources. Peer machines are simply

client computers connected to the Internet. All client machines act autonomously to join or leave the system freely. This implies

that no master-slave relationship exists among the peers. No central coordination or central database is needed. In other words, no

peer machine has a global view of the entire P2P system. The system is self-organizing with distributed control.
The figure below shows the architecture of a P2P network at two abstraction levels. Initially, the peers are totally unrelated.

Each peer machine joins or leaves the P2P network voluntarily. Only the participating peers form the physical network at any time.

Unlike the cluster or grid, a P2P network does not use a dedicated interconnection network. The physical network is simply an ad

hoc network formed at various Internet domains randomly using the TCP/IP and NAI protocols. Thus, the physical network varies in

size and topology dynamically due to the free membership in the P2P network.

Overlay Networks
Data items or files are distributed in the participating peers. Based on communication or file-sharing needs, the peer IDs form an

overlay network at the logical level. This overlay is a virtual network formed by mapping each physical machine with its ID, logically,

through a virtual mapping as shown in the figure. When a new peer joins the system, its peer ID is added as a node in the overlay

network. When an existing peer leaves the system, its peer ID is removed from the overlay network automatically. Therefore, it is

the P2P overlay network that characterizes the logical connectivity among the peers.
There are two types of overlay networks: unstructured and structured. An unstructured overlay network is characterized by a

random graph. There is no fixed route to send messages or files among the nodes. Often, flooding is applied to send a query to all

nodes in an unstructured overlay, thus resulting in heavy network traffic and nondeterministic search results. Structured overlay

net-works follow certain connectivity topology and rules for inserting and removing nodes (peer IDs) from the overlay graph.

Routing mechanisms are developed to take advantage of the structured overlays.

9. What are the major categories of P2P Network Family?

System Distributed File Collaborative Distributed P2P
Features Sharing Platform Computing P2P Platform

Attractive Content Instant messaging, Scientific Open networks for
Applications distribution of MP3 collaborative exploration and public resources

 music, video, open design and gaming social networking

 software, etc.

Operational Loose security and Lack of trust, Security holes, Lack of standards
Problems serious online disturbed by selfish partners, or protection

 copyright violations spam, privacy, and and peer collusion protocols
 peer collusion

Example Gnutella, Napster, ICQ, AIM, Groove, SETI@home, JXTA, .NET,
Systems eMule, BitTorrent, Magi, Multiplayer Geonome@home, FightingAid@home,

 Aimster, KaZaA, Games, Skype, etc. etc.
 etc. etc.

10. What are the various performance metrics used for a distributed system? Explain each of them.

In a distributed system, performance is attributed to a large number of factors. System throughput is often measured in MIPS
(Discuss MIPS as explained in class), Tflops (tera floating-point operations per second), or TPS (transactions per second). Other
measures include job response time and network latency. An interconnection network that has low latency and high bandwidth is
preferred. System overhead is often attributed to OS boot time, compile time, I/O data rate, and the runtime support sys-tem used.
Other performance-related metrics include the QoS for Internet and web services; system availability and dependability; and
security resilience for system defense against network attacks.

11. Discuss Amdahl’s Law.

Consider the execution of a given program on a uniprocessor workstation with a total execution time of T minutes. Now, let ’s say

the program has been parallelized or partitioned for parallel execution on a cluster of many processing nodes. Assume that a

fraction α of the code must be executed sequentially, called the sequential bottleneck. Therefore, (1 − α) of the code can be

compiled for parallel execution by n processors. The total execution time of the program is calculated by T + (1 − α)T/n, where the

first term is the sequential execution time on a single processor and the second term is the parallel execution time on n processing
nodes.

All system or communication overhead is ignored here. The I/O time or exception handling time is also not included in the

following speedup analysis. Amdahl’s Law states that the speedup factor of using the n-processor system over the use of a single
processor is expressed by:

The maximum speed up of n is achieved only if the sequential bottleneck α is reduced to zero or the code is fully parallelizable

with α = 0. As the cluster becomes sufficiently large, that is, n → ∞, S approaches 1/α, an upper bound on the speedup S.

Surprisingly, this upper bound is independent of the cluster size n. The sequential bottleneck is the portion of the code that cannot

be parallelized. For example, the maximum speedup achieved is 4, if α = 0.25 or 1 − α = 0.75, even if one uses hundreds of

processors. Amdahl’s law teaches us that we should make the sequential bottle-neck as small as possible. Increasing the cluster size

alone may not result in a good speed up in this case.

b. What is the problem with fixed workload that Gustafson’s Law overcomes?

Problem with Fixed Workload
In Amdahl’s law, we have assumed the same amount of workload for both sequential and parallel execution of the program with a

fixed problem size or data set. This was called fixed-workload speedup by Hwang and Xu. To execute a fixed workload on n

processors, parallel processing may lead to a system efficiency defined as follows:

Very often the system efficiency is rather low, especially when the cluster size is very large. To execute the aforementioned
program on a cluster with n = 256 nodes, extremely low efficiency E = 1/[0.25 × 256 + 0.75] = 1.5% is observed. This is because only
a few processors (say, 4) are kept busy, while the majority of the nodes are left idling.

Gustafson’s Law
To achieve higher efficiency when using a large cluster, we must consider scaling the problem size to match the cluster capability.

This leads to the following speedup law proposed by John Gustafson (1988), referred as scaled-workload speedup in [14]. Let W be

the workload in a given program. When using an n-processor system, the user scales the workload to W′ = αW + (1 − α)nW. Note

that only the parallelizable portion of the workload is scaled n times in the second term. This scaled workload W ′ is essentially the

sequential execution time on a single processor. The parallel execution time of a scaled workload W′ on n processors is defined by a

scaled-workload speedup as follows:

This speedup is known as Gustafson’s law. By fixing the parallel execution time at level W, the following efficiency expression is
obtained:

For the preceding program with a scaled workload, we can improve the efficiency of using a 256-node cluster to E′ = 0.25/256 +
0.75 = 0.751. One should apply Amdahl’s law and Gustafson’s law under different workload conditions. For a fixed workload,
users should apply Amdahl’s law. To solve scaled problems, users should apply Gustafson’s law.

11. Instruction Set Architecture Level

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host machine. For example, MIPS

binary code can run on an x86-based host machine with the help of ISA emulation. With this approach, it is possible to run a

large amount of legacy binary code written for various processors on any given new hardware host machine. Instruction set

emulation leads to virtual ISAs created on any hardware machine. The basic emulation method is through code interpretation.

An interpreter program interprets the source instructions to target instructions one by one. One source instruction may require

tens or hundreds of native target instructions to perform its function. Obviously, this process is relatively slow. For better

performance, dynamic binary translation is desired. This approach translates basic blocks of dynamic source instructions to

target instructions. The basic blocks can also be extended to program traces or super blocks to increase translation efficiency.

Instruction set emulation requires binary translation and optimization. A virtual instruction set architecture (V-ISA) thus

requires adding a processor-specific software translation layer to the compiler.

Hardware Abstraction Level

Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, this approach generates a virtual

hardware environment for a VM. On the other hand, the process manages the underlying hardware through virtualization. The

idea is to virtualize a computer’s resources, such as its processors, memory, and I/O devices. The intention is to upgrade the

hardware utilization rate by multiple users concurrently. The idea was implemented in the IBM VM/370 in the 1960s. More

recently, the Xen hypervisor has been applied to virtualize x86-based machines to run Linux or other

guest OS applications.

Operating System Level

This refers to an abstraction layer between traditional OS and user applications. OS-level virtualization creates isolated

containers on a single physical server and the OS instances to utilize the hardware and software in data centers. The containers

behave like real servers. OS-level virtualization is commonly used in creating virtual hosting environments to allocate hardware

resources among a large number of mutually distrusting users. It is also used, to a lesser extent, in consolidating server hardware

by moving services on separate hosts into containers or VMs on one server.

Library Support Level

Most applications use APIs exported by user-level libraries rather than using lengthy system calls by the OS. Since most systems

provide well-documented APIs, such an interface becomes another candidate for virtualization. Virtualization with library

interfaces is possible by controlling the communication link between applications and the rest of a system through API hooks.

The software tool WINE has implemented this approach to support Windows applications on top of UNIX hosts.

Another example is the vCUDA which allows applications executing within VMs to leverage GPU

hardware acceleration.

User-Application Level

Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an application often runs as a

process. Therefore, application-level virtualization is also known a sprocess-level virtualization. The most popular approach is to

deploy high level language (HLL) VMs. In this scenario, the virtualization layer sits as an application program on top of the

operating system, and the layer exports an abstraction of a VM that can run programs written and compiled to a particular

abstract machine definition. Any program written in the HLL and compiled for this VM will be able to run on it. The Microsoft

.NET CLR and Java Virtual Machine (JVM) are two good examples of this class of VM. Other forms of application-level

virtualization are known as application isolation, application sandboxing, or application streaming. The process involves

wrapping the application in a layer that is isolated from the host OS and other applications. The result is an application that is

much easier to distribute and remove from user workstations. An example is the LANDesk application virtualization platform

which deploys software applications as self-contained, executable files in an isolated

environment without requiring installation, system modifications, or elevated security privileges. process-level virtualization.

The most popular approach is to deploy high level language (HLL) VMs. In this scenario, the virtualization layer sits as an

application program on top of the operating system, and the layer exports an abstraction of a VM that can run programs written

and compiled to a particular abstract machine definition. Any program written in the HLL and compiled for this

VM will be able to run on it. The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this class of

VM. Other forms of application-level virtualization are known as application isolation, application sandboxing, or application

streaming. The process involves wrapping the application in a layer that is isolated from the host OS and other applications. The

result is an application that is much easier to distribute and remove from user workstations. An example is the LANDesk

application virtualization platform which deploys software applications as self-contained, executable files in an isolated

environment without requiring installation, system modifications, or elevated security privileges.

12.

Advantage:

Compared to hardware-level virtualization, the benefits of OS extensions are twofold: (1) VMs at the operating system level have

minimal startup/shutdown costs, low resource requirements, and high scalability; and (2) for an OS-level VM, it is possible for a VM

and its host environment to synchronize state changes when necessary. These benefits can be achieved via two mechanisms of OS-

level virtualization: (1) All OS-level VMs on the same physical machine share a single operating system kernel; and (2) the

virtualization layer can be designed in a way that allows processes in VMs to access as many resources of the host machine as

possible, but never to modify them. In cloud computing, the first and second benefits can be used to overcome the defects of slow

initialization of VMs at the hardware level, and being unaware of the current application state, respectively.

Disadvantage:

The main disadvantage of OS extensions is that all the VMs at operating system level on a single container must have the same kind

of guest operating system. That is, although different OS-level VMs may have different operating system distributions, they must

pertain to the same operating system family. For example, a Windows distribution such as Windows XP cannot run on a Linux-based

container. However, users of cloud computing have various preferences. Some prefer Windows and others prefer Linux or other

operating systems. Therefore, there is a challenge for OS-level virtualization in such cases. The virtualization layer is inserted inside

the OS to partition the hardware resources for multiple VMs to run their applications in multiple virtual environments. To implement

OS-level virtualization, isolated execution environments (VMs) should be created based on a single OS kernel. Furthermore, the

access requests from a VM need to be redirected to the VM’s local resource partition on the physical machine. For example, the

chroot command in a UNIX system can create several virtual root directories within a host OS. These virtual root directories are the

root directories of all VMs created. There are two ways to implement virtual root directories: duplicating common resources to each

VM partition; or sharing most resources with the host environment and only creating private resource copies on the VM on demand.

The first way incurs significant resource costs and overhead on a physical machine. This issue neutralizes the benefits of OS-level

virtualization, compared with hardware-assisted virtualization. Therefore, OS-level virtualization is often a second choice.

13

.

CUDA is a programming model and library for general-purpose GPUs. It leverages the high performance of GPUs to run compute-

intensive applications on host operating systems. However, it is difficult to run CUDA applications on hardware-level VMs directly.

vCUDA virtualizes the CUDA library and can be installed on guest OSes. When CUDA applications run on a guest OS and issue a

call to the CUDA API, vCUDA intercepts the call and redirects it to the CUDA API running on the host OS. The vCUDA employs a

client-server model to implement CUDA virtualization. It consists of three user space components: the vCUDA library, a virtual

GPU in the guest OS (which acts as a client), and the vCUDA stub in the host OS (which acts as a server). The vCUDA library

resides in the guest OS as a substitute for the standard CUDA library. It is responsible for intercepting and redirecting API calls from

the client to the stub. Besides these tasks, vCUDA also creates vGPUs and manages them. The functionality of a vGPU is threefold:

It abstracts the GPU structure and gives applications a uniform view of the underlying hardware; when a CUDA application in the

guest OS allocates a device’s memory the vGPU can return a local virtual address to the application and notify the remote stub to

allocate the real device memory, and the vGPU is responsible for storing the CUDA API flow. The vCUDA stub receives and

interprets remote requests and creates a corresponding execution context for the API calls from the guest OS, then returns the results

to the guest OS. The vCUDA stub also manages actual physical resource allocation.

14.

Host-Based Virtualization

An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS is still responsible for managing

the hardware. The guest OSes are installed and run on top of the virtualization layer. Dedicated applications may run on the VMs.

Certainly, some other applications can also run with the host OS directly. This hostbased architecture has some distinct advantages,

as enumerated next. First, the user can install thisVM architecture without modifying the host OS. The virtualizing software can rely

on the host OS to provide device drivers and other low-level services. This will simplify the VM design and ease

its deployment. Second, the host-based approach appeals to many host machine configurations. Compared to the hypervisor/VMM

architecture, the performance of the host-based architecture may also be low. When an application requests hardware access, it

involves four layers of mapping which downgrades performance significantly. When the ISA of a guest OS is different from the ISA

of the underlying hardware, binary translation must be adopted. Although the host-based architecture has flexibility, the performance

is too low to be useful in practice.

Para-Virtualization Architecture

When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and the OS. According to the x86 ring

definition, the virtualization layer should also be installed at Ring 0. Different instructions at Ring 0 may cause some problems. In the

figure below, we show that para-virtualization replaces nonvirtualizable instructions with hypercalls that communicate directly with

the hypervisor or VMM. However, when the guest OS kernel is modified for virtualization, it can no longer run on the hardware

directly. Although para-virtualization reduces the overhead, it has incurred other problems. First, its compatibility and portability

may be in doubt, because it must support the unmodified OS as well. Second, the cost of maintaining para-virtualized OSes is high,

because they may require deep OS kernel modifications. Finally, the performance advantage of para-virtualization varies greatly due

to workload variations. Compared with full virtualization, para-virtualization is relatively easy and more practical. The main problem

in full virtualization is its low performance in binary translation. To speed up binary translation is difficult. Therefore, many

virtualization products employ the para-virtualization architecture. The popular Xen, KVM, and VMware ESX are good examples.

15.

16.

Steps 0 and 1: Start migration. This step makes preparations for the migration, including determining the migrating VM and the

destination host. Although users could manually make a VM migrate to an appointed host, in most circumstances, the migration is

automatically started by strategies such as load balancing and server consolidation.

Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory, sending the VM’s memory to the

destination node ensures continuity of the service provided by the VM. All of the memory data is transferred in the first round, and

then the migration controller recopies the memory data which is changed in the last round. These steps keep iterating until the

dirty portion of the memory is small enough to handle the final copy. Although precopying memory is performed iteratively, the

execution of programs is not obviously interrupted.

Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s execution is suspended when the last round’s

memory data is transferred. Other nonmemory data such as CPU and network states should be sent as well. During this step, the VM

is stopped and its applications will no longer run. This “service unavailable” time is called the “downtime” of migration, which

should be as short as possible so that it can be negligible to users.

Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on the destination host, the VM reloads the

states and recovers the execution of programs in it, and the service provided by this VM continues. Then the network connection is

redirected to the new VM and the dependency to the source host is cleared. The whole migration process finishes by removing the

original VM from the source host.

17. Virtual clusters are built with VMs installed at distributed servers from one or more physical clusters. The VMs in a virtual

cluster are interconnected logically by a virtual network across several physical networks. Each virtual cluster is formed with

physical machines or a VM hosted by multiple physical clusters. The virtual cluster boundaries are shown as distinct boundaries.

The provisioning of VMs to a virtual cluster is done dynamically to have the following interesting properties:

• The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running with different OSes can be deployed on

the same physical node.

• A VM runs with a guest OS, which is often different from the host OS, that manages the resources in the physical machine, where

the VM is implemented.

• The purpose of using VMs is to consolidate multiple functionalities on the same server. This will greatly enhance server utilization

and application flexibility.

• VMs can be colonized (replicated) in multiple servers for the purpose of promoting distributed parallelism, fault tolerance , and

disaster recovery.

• The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to the way an overlay network varies in size

in a peer-to-peer (P2P) network.

• The failure of any physical nodes may disable some VMs installed on the failing nodes. But the failure of VMs will not pull down

the host system.

Since system virtualization has been widely used, it is necessary to effectively manage VMs running on a mass of physical

computing nodes (also called virtual clusters) and consequently build a high-performance virtualized computing environment. This

involves virtual cluster deployment, monitoring and management over large-scale clusters, as well as resource scheduling, load

balancing, server consolidation, fault tolerance, and other techniques. The different node colors in the Figure refer to different virtual

clusters. In a virtual cluster system, it is quite important to store the large number of VM images efficiently. The different colors in

the figure represent the nodes in different virtual clusters. As a large number of VM images might be present, the most important

thing is to determine how to store those images in the system efficiently. There are common installations for most users or

applications, such as operating systems or user-level programming libraries. These software packages can be preinstalled as

templates (called template VMs). With these templates, users can build their own software stacks. New OS instances can be copied

from the template VM. User-specific components such as programming libraries and applications can be installed to those instances.

Three physical clusters are shown on the left side of the Figure. Four virtual clusters are created on the right, over the physical

clusters. The physical machines are also called host systems. In contrast, the VMs are guest systems. The host and guest systems may

run with different operating systems. Each VM can be installed on a remote server or replicated on multiple servers belonging to the

same or different physical clusters. The boundary of a virtual cluster can change as VM nodes are added, removed, or migrated

dynamically over time.

18.

What is a public cloud?

A public cloud is built over the Internet and can be accessed by any user who has paid for the service. Public clouds are owned by

service providers and are accessible through a subscription. The callout box in top of Figure shows the architecture of a typical public

cloud. Many public clouds are available, including Google App Engine (GAE), Amazon Web Services (AWS), Microsoft Azure,

IBM Blue Cloud, and Salesforce.com’s Force.com. The providers of the aforementioned clouds are commercial providers that offer a

publicly accessible remote interface for creating and managing VM instances within their proprietary infrastructure. A public cloud

delivers a selected set of business processes. The application and infrastructure services are offered on a flexible price-per-use basis.

Advantages of public clouds:

 Lower costs—no need to purchase hardware or software and you pay only for the service you use.

 No maintenance—your service provider provides the maintenance.

 Near-unlimited scalability—on-demand resources are available to meet your business needs.

 High reliability—a vast network of servers ensures against failure.

What is a private cloud?

A private cloud is built within the domain of an intranet owned by a single organization. Therefore, it is client owned and managed,

and its access is limited to the owning clients and their partners. Its deployment was not meant to sell capacity over the Internet

through publicly accessible interfaces. Private clouds give local users a flexible and agile private infrastructure to run service

workloads within their administrative domains. A private cloud is supposed to deliver more efficient and convenient cloud services.

It may impact the cloud standardization, while retaining greater customization and organizational control.

Advantages of private clouds:

 More flexibility—your organisation can customise its cloud environment to meet specific business needs.

 Improved security—resources are not shared with others, so higher levels of control and security are possible.

 High scalability—private clouds still afford the scalability and efficiency of a public cloud.

What is a hybrid cloud?

A hybrid cloud is built with both public and private clouds, as shown at the lower-left corner of Figure. Private clouds can also

support a hybrid cloud model by supplementing local infrastructure with computing capacity from an external public cloud. For

example, the Research Compute Cloud (RC2) is a private cloud, built by IBM, that interconnects the computing and IT resources at

eight IBM Research Centers scattered throughout the United States, Europe, and Asia. A hybrid cloud provides access to clients, the

partner network, and third parties.

Advantages of hybrid clouds:

 Control—your organisation can maintain a private infrastructure for sensitive assets.

 Flexibility—you can take advantage of additional resources in the public cloud when you need them.

 Cost-effectiveness—with the ability to scale to the public cloud, you pay for extra computing power only when needed.

 Ease—transitioning to the cloud does not have to be overwhelming because you can migrate gradually—phasing in workloads over

time.

19. IaaS: Infrastructure as a Service

Cloud infrastructure services, known as Infrastructure as a Service (IaaS), are made of highly scalable and automated compute

resources. IaaS is fully self-service for accessing and monitoring things like compute, networking, storage, and other services, and it

allows businesses to purchase resources on-demand and as-needed instead of having to buy hardware outright.

Some characteristics to look for when considering IaaS are:

 Resources are available as a service

 The cost varies depending on consumption

 Services are highly scalable

 Typically includes multiple users on a single piece of hardware

https://www.bmc.com/blogs/self-service-thrives-clouds/

 Provides complete control of the infrastructure to organizations

 Dynamic and flexible

PaaS: Platform as a Service

Cloud platform services, or Platform as a Service (PaaS), provide cloud components to certain software while being used mainly for

applications. PaaS provides a framework for developers that they can build upon and use to create customized applications. All

servers, storage, and networking can be managed by the enterprise or a third-party provider while the developers can maintain

management of the applications.

PaaS has many characteristics that define it as a cloud service, including:

 It is built on virtualization technology, meaning resources can easily be scaled up or down as your business changes

 Provides a variety of services to assist with the development, testing, and deployment of apps

 Numerous users can access the same development application

 Web services and databases are integrated

SaaS: Software as a Service

Software as a Service, also known as cloud application services, represent the most commonly utilized option for businesses in the

cloud market. SaaS utilizes the internet to deliver applications to its users, which are managed by a third-party vendor. A majority of

SaaS applications are run directly through the web browser, and do not require any downloads or installations on the client side.

There are a few ways to help you determine when SaaS is being utilized:

 Managed from a central location

 Hosted on a remote server

 Accessible over the internet

 Users not responsible for hardware or software updates

20. Summarize on Service-oriented Architecture with a neat diagram

A service-oriented architecture (SOA) is a style of software design where services are provided to the other components by

application components, through a communication protocol over a network. The basic principles of service-oriented architecture are
independent of vendors, products and technologies.[1] A service is a discrete unit of functionality that can be accessed remotely and
acted upon and updated independently, such as retrieving a credit card statement online.
A service has four properties according to one of many definitions of SOA
1. It logically represents a business activity with a specified outcome.

2. It is self-contained.

3. It is a black box for its consumers.

4. It may consist of other underlying services.

Different services can be used in conjunction to provide the functionality of a large software application, a principle it shares with
modular programming. Service-oriented architecture integrates distributed, separately-maintained and deployed software components.
It is enabled by technologies and standards that make it easier for components to communicate and cooperate over a network,
especially an IP network.
In SOA, services use protocols that describe how they pass and parse messages using description metadata. This metadata
describes both the functional characteristics of the service and quality-of-service characteristics. Service-oriented architecture aims to
allow users to combine large chunks of functionality to form applications which are built purely from existing services and combining
them in an ad hoc manner. A service presents a simple interface to the requester that abstracts away the underlying complexity acting
as a black box. Further users can also access these independent services without any knowledge of their internal implementation.
The related buzzword service-orientation promotes loose coupling between services. SOA separates functions into distinct units, or

services, which developers make accessible over a network in order to allow users to combine and reuse them in the production of
applications. These services and their corresponding consumers communicate with each other by passing data in a well-defined,
shared format, or by coordinating an activity between two or more services.[7]

A manifesto was published for service-oriented architecture in October, 2009. This came up with six core values which are listed as
follows

1. Business value is given more importance than technical strategy.

2. Strategic goals are given more importance than project-specific benefits.

3. Intrinsic inter-operability is given more importance than custom integration.

4. Shared services are given more importance than specific-purpose implementations.

5. Flexibility is given more importance than optimization.

6. Evolutionary refinement is given more importance than pursuit of initial perfection.

SOA can be seen as part of the continuum which ranges from the older concept of distributed computing and modular programming,
through SOA, and on to current practices of mashups, SaaS, and cloud computing(which some see as the offspring of SOA).

21. Define Message Passing Interface and Map Reduce

Message passing interface (MPI)

The message passing interface (MPI) is a standardized means of exchanging messages between multiple computers running a
parallel program across distributed memory. In parallel computing, multiple computers -- or even multiple processor cores within the
same computer -- are called nodes. Each node in the parallel arrangement typically works on a portion of the overall computing
problem. The challenge then is to synchronize the actions of each parallel node, exchange data between nodes and provide command
and control over the entire parallel cluster. The message passing interface defines a standard suite of functions for these tasks. MPI is
not endorsed as an official standard by any standards organization such as IEEE or ISO, but it is generally considered to be the
industry standard and it forms the basis for most communication interfaces adopted by parallel computing programmers. The older
MPI 1.3 standard (dubbed MPI-1) provides over 115 functions. The later MPI 2.2 standard (or MPI-2) offers over 500 functions and is
largely backward compatible with MPI-1. However, not all MPI libraries provide a full implementation of MPI-2.
MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel,
distributed algorithm on a cluster. A MapReduce program is composed of a map procedure (or method), which performs filtering and
sorting (such as sorting students by first name into queues, one queue for each name), and a reduce method, which performs a
summary operation (such as counting the number of students in each queue, yielding name frequencies). The "MapReduce System"
(also called "infrastructure" or "framework") orchestrates the processing by marshalling the distributed servers, running the various
tasks in parallel, managing all communications and data transfers between the various parts of the system, and providing for
redundancy and fault tolerance.

22. Write a note on Network Treats and Data Integrity

Clusters, grids, P2P networks, and clouds demand security and copyright protection if they are to be accepted in today’s digital
society. Network viruses have threatened many users in widespread attacks. These incidents have created a worm epidemic by
pulling down many routers and servers, and are responsible for the loss of billions of dollars in business, government, and services.
Information leaks lead to a loss of confidentiality. Loss of data integrity may be caused by user alteration, Trojan horses, and service
spoofing attacks. A denial of service (DoS) results in a loss of system operation and Internet connections. Lack of authentication or
authorization leads to attackers’ illegitimate use of computing resources. Open resources such as data centers, P2P networks, and
grid and cloud infrastructures could become the next targets. Users need to protect clusters, grids, clouds, and P2P systems.

Otherwise, users should not use or trust them for outsourced work. Malicious intrusions to these systems may destroy valuable hosts,
as well as network and storage resources. Internet anomalies found in routers, gateways, and distributed hosts may hinder the
acceptance of these public-resource computing services.

Three security requirements are often considered: confidentiality, integrity, and availability for most Internet service providers and
cloud users. In the order of SaaS, PaaS, and IaaS, the providers gradually release the responsibility of security control to the cloud
users. In summary, the SaaS model relies on the cloud provider to perform all security functions. At the other extreme, the IaaS model
wants the users to assume almost all security functions, but to leave availability in the hands of the providers. The PaaS model relies
on the provider to maintain data integrity and availability, but burdens the user with confidentiality and privacy control.
Collusive piracy is the main source of intellectual property violations within the boundary of a P2P network. Paid clients (colluders)
may illegally share copyrighted content files with unpaid clients (pirates). Online piracy has hindered the use of open P2P networks for
commercial content delivery. One can develop a proactive content poisoning scheme to stop colluders and pirates from alleged
copyright infringements in P2P file sharing. Pirates are detected in a timely manner with identity-based signatures and timestamped
tokens. This scheme stops collusive piracy from occurring without hurting
legitimate P2P clients.
Three generations of network defense technologies have appeared in the past. In the first generation, tools were designed to prevent
or avoid intrusions. These tools usually manifested themselves as access control policies or tokens, cryptographic systems, and so
forth. However, an intruder could always penetrate a secure system because there is always a weak link in the security provisioning
process. The second generation detected intrusions in a timely manner to exercise remedial actions. These techniques included
firewalls, intrusion detection systems (IDSes), PKI services, reputation systems, and so on. The third generation provides more
intelligent responses to intrusions.
Security infrastructure is required to safeguard web and cloud services. At the user level, one needs to perform trust negotiation and
reputation aggregation over all users. At the application end, we need to establish security precautions in worm containment and
intrusion detection against virus, worm, and distributed DoS (DDoS) attacks. We also need to deploy mechanisms to prevent online
piracy and copyright violations of digital content. Security responsibilities are divided between cloud providers and users differently for
the three cloud service models. The providers are totally responsible for platform availability. The IaaS users are more responsible for
the confidentiality issue. The IaaS providers are more responsible for data integrity. In PaaS and SaaS services, providers and users
are equally responsible for preserving data integrity and confidentiality.

23. Explain fault tolerance and system availability

In addition to performance, system availability and application flexibility are two other important design goals in a distributed computing
system. HA (high availability) is desired in all clusters, grids, P2P networks, and cloud systems. A system is highly available if it has a
long mean time to failure (MTTF) and a short mean time to repair (MTTR). System availability is formally defined as follows:
System Availability =MTTF/MTTF +MTTR
System availability is attributed to many factors. All hardware, software, and network components may fail. Any failure that will pull
down the operation of the entire system is called a single point of failure. The rule of thumb is to design a dependable computing
system with no single point of failure. Adding hardware redundancy, increasing component reliability, and designing for testability will
help to enhance system availability and dependability.
In general, as a distributed system increases in size, availability decreases due to a higher chance of failure and a difficulty in isolating
the failures. Both SMP and MPP are very vulnerable with centralized resources under one OS. NUMA machines have improved in
availability due to the use of multiple OSes. Most clusters are designed to have HA with failover capability. Meanwhile, private clouds
are created out of virtualized data centers; hence, a cloud has an estimated availability similar to that of the hosting cluster. A grid is
visualized as a hierarchical cluster of clusters. Grids have higher availability due to the isolation of faults. Therefore, clusters, clouds,
and grids have decreasing availability as the system increases in size. A P2P file-sharing network has the highest aggregation of client
machines. However, it operates independently with low availability, and even many peer nodes depart or fail simultaneously.

24. Describe computational grid
Like an electric utility power grid, a computing grid offers an infrastructure that couples computers, software/middleware, special
instruments, and people and sensors together. The grid is often constructed across LAN, WAN, or Internet backbone networks at a
regional, national, or global scale. Enterprises or organizations present grids as integrated computing resources. They can also be
viewed as virtual platforms to support virtual organizations. The computers used in a grid are primarily workstations, servers, clusters,
and supercomputers. Personal computers, laptops, and PDAs can be used as access devices to a grid system. The resource sites
offer complementary computing resources, including workstations, large servers, a mesh of processors, and Linux clusters to satisfy a
chain of computational needs. The grid is built across various IP broadband networks including LANs and WANs already used by
enterprises or organizations over the Internet. The grid is presented to users as integrated resources pool as shown in the upper half
of the figure. Special instruments may be involved such as using the radio telescope in SETI@Home search of life in the galaxy and
the austrophysics@Swineburne for pulsars. At the server end, the grid is a network. At the client end, we see wired or wireless
terminal devices. The grid integrates the computing, communication, contents, and transactions as rented services. Enterprises and
consumers form the user base, which then defines the usage trends and service characteristics.
Grid technology demands new distributed computing models, software/middleware support, network protocols, and hardware
infrastructures. National grid projects are followed by industrial grid platform development by IBM, Microsoft, Sun, HP, Dell, Cisco,
EMC, Platform Computing, and others. New grid service providers (GSPs) and new grid applications have emerged rapidly, similar to
the growth of Internet and web services in the past two decades. Grid systems are classified in essentially two categories:
computational or data grids and P2P grids. Computing or data grids are built primarily at the national level.

25. Explain various levels of implementing virtualization
Instruction Set Architecture Level

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host machine. For example, MIPS binary code
can run on an x86-based host machine with the help of ISA emulation. With this approach, it is possible to run a large amount of
legacy binary code written for various processors on any given new hardware host machine. Instruction set emulation leads to virtual
ISAs created on any hardware machine. The basic emulation method is through code interpretation. An interpreter program interprets
the source instructions to target instructions one by one. One source instruction may require tens or hundreds of native target
instructions to perform its function. Obviously, this process is relatively slow. For better performance, dynamic binary translation is
desired. This approach translates basic blocks of dynamic source instructions to target instructions. The basic blocks can also be
extended to program traces or super blocks to increase translation efficiency. Instruction set emulation requires binary translation and
optimization. A virtual instruction set architecture (V-ISA) thus
requires adding a processor-specific software translation layer to the compiler.
Hardware Abstraction Level

Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, this approach generates a virtual
hardware environment for a VM. On the other hand, the process manages the underlying hardware through virtualization. The idea is
to virtualize a computer’s resources, such as its processors, memory, and I/O devices. The intention is to upgrade the hardware
utilization rate by multiple users concurrently. The idea was implemented in the IBM VM/370 in the 1960s. More recently, the Xen
hypervisor has been applied to virtualize x86-based machines to run Linux or other
guest OS applications.
Operating System Level

This refers to an abstraction layer between traditional OS and user applications. OS-level virtualization creates isolated containers on
a single physical server and the OS instances to utilize the hardware and software in data centers. The containers behave like real
servers. OS-level virtualization is commonly used in creating virtual hosting environments to allocate hardware resources among a
large number of mutually distrusting users. It is also used, to a lesser extent, in consolidating server hardware by moving services on
separate hosts into containers or VMs on one server.
Library Support Level

Most applications use APIs exported by user-level libraries rather than using lengthy system calls by the OS. Since most systems
provide well-documented APIs, such an interface becomes another candidate for virtualization. Virtualization with library interfaces is
possible by controlling the communication link between applications and the rest of a system through API hooks. The software tool
WINE has implemented this approach to support Windows applications on top of UNIX hosts.
Another example is the vCUDA which allows applications executing within VMs to leverage GPU
hardware acceleration.
User-Application Level

Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an application often runs as a process.
Therefore, application-level virtualization is also known a sprocess-level virtualization. The most popular approach is to deploy high
level language (HLL) VMs. In this scenario, the virtualization layer sits as an application program on top of the operating system, and
the layer exports an abstraction of a VM that can run programs written and compiled to a particular abstract machine definition. Any
program written in the HLL and compiled for this VM will be able to run on it. The Microsoft .NET CLR and Java Virtual Machine (JVM)
are two good examples of this class of VM. Other forms of application-level virtualization are known as application isolation,
application sandboxing, or application streaming. The process involves wrapping the application in a layer that is isolated from the host
OS and other applications. The result is an application that is much easier to distribute and remove from user workstations. An
example is the LANDesk application virtualization platform which deploys software applications as self-contained, executable files in
an isolated
environment without requiring installation, system modifications, or elevated security privileges. process-level virtualization. The most
popular approach is to deploy high level language (HLL) VMs. In this scenario, the virtualization layer sits as an application program
on top of the operating system, and the layer exports an abstraction of a VM that can run programs written and compiled to a particular
abstract machine definition. Any program written in the HLL and compiled for this
VM will be able to run on it. The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this class of VM.
Other forms of application-level virtualization are known as application isolation, application sandboxing, or application streaming. The
process involves wrapping the application in a layer that is isolated from the host OS and other applications. The result is an
application that is much easier to distribute and remove from user workstations. An example is the LANDesk application virtualization
platform which deploys software applications as self-contained, executable files in an isolated environment without requiring
installation, system modifications, or elevated security privileges.

