

CMR Institute of Technology

Unix and Shell Programming-18MCA12

Answer Key-December 2019

1.a. Explain the UNIX architecture with a neat diagram.
UNIX OS distributes its major jobs into two agencies viz. kernel and shell.
Kernel: The kernel is also known as operating system. It interacts with the hardware of the machine.
The kernel is the core of OS and it is a collection of routines/functions written in C. Kernel is loaded into
memory when the system is booted and communicates with the hardware. The application programs
access the kernel through a set of functions called as system calls. The kernel manages various OS tasks
like memory management, process scheduling, deciding job priorities etc. Even if none of the user
programs are running, kernel will be working in a background.
 Shell: The shell interacts with the user. It acts as a command interpreter to translate user’s command
into action. It is actually an interface between user and the kernel. Even though there will be only one
kernel running, multiple shells will be active – one for each user. When a command is given as input
through the keyboard, the shell examines the command and simplifies it and then communicates with
the kernel to see that the command is executed. The shell is represented by sh (Bourne Shell), csh (C
Shell), ksh (Korn shell), bash (Bash shell).
 The relationship between kernel and shell is shown in Figure

The File and Process
The file and the process are two simple entities that support UNIX.
File: A file is an array of bytes and it can contain any data. Various files are related to each other by a
hierarchical structure. Even a user (user name) is placed in this file system. UNIX considers directories
and the devices also as the members of file system. In UNIX, the major file type is text and the behavior
of UNIX is controlled mainly by text files. UNIX provides various text manipulation tools through which
the files can be edited without using an editor.
Process: A processing a program under execution. Processes are also belonging to separate hierarchical
structure. A process can be created and destroyed. UNIX provides tools to the user to control the
processes, move them between foreground and background and to kill them.

The System Calls:
 System calls are used to communicate with the kernel. There are more than thousand commands in
UNIX, but they all use few set of function called as system calls for communication with kernel. All UNIX
flavors (like Linux, Ubuntu etc) all use the same system calls. For example, write is a system call in UNIX.
C programmer in UNIX environment can directly use this system call to write data into a file. Whereas,
the C Programmer in Windows environment may need to use library function like fprintf() to write into a
file. A system call open in UNIX can be used to open a file or a device. Here, the purpose is different, but
the system call will be same. Such feature of UNIX allows it to have many commands for user purpose,
but only few system calls internally for the actual work to be carried out in association with the kernel.
 1.b. Explain in detail any five feature of UNIX operating system.
• /var/tmp : A place for temporary files which should be preserved between system reboots.
 A Multiuser System: UNIX is basically a multiprogramming system. Here, either Multiple users can run
separate jobs or Singe user can run multiple jobs. In UNIX, many processes are running simultaneously.
And, the resources like CPU, memory and hard disk etc are shared between all users. Hence, UNIX is a
multiuser system as well. The Unix system breaks up one time unit into several segments and each user
is allotted one segment. At any point of time, the machine will be doing the job of one user. When the
allotted time expires, the job is temporarily suspended and next user’s job is taken up. This process
continues till all processes gets one segment each and once again the first user’s job is taken up. The
kernel does this task several times in one second such a way that the users will never come to know
about it and users cannot make out the delay in between.
 A Multitasking System: Unix is a multitasking system, wherein a single user can run multiple jobs
concurrently. A user may edit a file, print a document on a printer and open a browser etc – all at a time.
In multitasking environment, a user can see one job running in the foreground and all other jobs run in
the background. The jobs can be switched between background and foreground; they can be suspended
or terminated.
 The Building-Block Approach: Unix is a collection of few hundred commands, each of which is designed
to perform one task. More than one command can be connected via the | (pipe) symbol to perform
multiple tasks. The commands which can be connected are called as filters because, they filter or
manipulate data in different ways. Many Unix tools are designed such a way that the output of one tool
can be used as input to another tool. For this reason, UNIX commands do not generate lengthy or messy
outputs. If a program is interactive, then user’s response to it may be different. In such situations, the
output of one command cannot be made as input to another command. Hence, UNIX programs are not
interactive.
 The UNIX Toolkit: Unix contains diverse set of applications like text manipulation utilities, compilers and
interpreters, networked applications, system administration tools etc. The Unix kernel does many tasks
with the help of these applications. Such set of tools are constantly varying with every release of UNIX.

In every release, new tools are being added and old tools are either removed or modified. Most of these
tools are open-source utilities and the user can download them and configure to run on one’s machine.
 Pattern Matching: Unix has very sophisticated pattern matching features. The character like * (known
as a metacharacter) helps in searching many files starting with a particular name. Various characters
from a metacharacter set of Unix will help the user in writing regular expressions that will help in
pattern matching.
Programming Facility: The Unix shell is a programming language as well. It provides the user to write
his/her own programs using control structures, loops, variables etc. Such programs are called as shell
scripts. Shell scripts can invoke Unix commands and they can control various functionalities of Unix OS.
 Documentation: Unix provides a large set of documents to understand the working of every command
and feature of it. The man command can be used on an editor to get the manual about any Unix
command. Moreover, there are plenty of documents, newsgroups, forums and FAQ (Frequently Asked
Questions) files available on internet, where one can get any information about Unix.

2.a. Explain the following commands.
 i)cat ii)bc iii)date iv)script v)tty
i)cat
It is a short-form of the term concatenate. This command is basically used for viewing the contents of a
file. But, it has many other usages like creating a file, joining more than one file etc. Here, few of the
usages of cat command are discussed.
 To create a new file:
Following is an example to create a new file –
 $ cat >test hello how are you?
 I'm doing good.
 what about you?
 [Ctrl+d] $
To display contents of a file: The cat command is used with filename to display the contents of the file as
shown below –
 $cat t1
 This is first file $
 bc
UNIX provides two types of calculators – a graphical (GUI) calculator (similar to the one
available in windows OS) and a character based bc command. A visual calculator can be
available using xcalc command and it is available only on X Window system, but not on
command-line based terminals.
The calculator available through bc command is a very powerful, but sadly a most
neglected tool in UNIX. When bc command is invoked without any argument, it does
nothing but waits for the input from the keyboard. Once the job is done, ctrl+d has to be
pressed to release the command and to get a prompt.
The usage of bc command is illustrated here with examples.

 Basic operations:

$bc

3+5

8

5*6

30

6-10

-4

[ctrl+d]

 To perform more than one operation in a single line:

$bc

2^4; 3+6 //using semicolon as a separator

16

9

[ctrl+d]

 Setting scale for required precision during division operation:

By default, bc performs truncated division (or integer division). For example,
$bc

9/5

1

Here, the output 1, instead of 1.8. To avoid such truncation, one can set the
precision after the decimal point. For example,
$bc

scale=2

9/5

1.80

22/7

3.14

 Converting numbers from one base to the other:

One can change the base of a number by setting ibase (input base) or obase
(output base). For example –
$bc

ibase=2 //setting input base as 2

1100

12 //decimal equivalent of 1100

11001110

206
ii)date
The date command in UNIX is used to display the current date and time of the system. The
UNIX system maintains an internal clock that runs continuously. When the system is
shutdown, the battery backup keeps the clock ticking. This clock actually stores the number
of seconds elapsed since 1st January 1970. A 32-bit counter store these seconds and it is
expected to overflow sometime in 2018.
The format of the date command is “Day Month date hr:min:sec IST year”. For example –
$date
Mon Jun 30 11:35:32 IST 2017
Suitable format specifiers can be used as an argument to date command to get the
date/month/year etc. in required format. The format specifier is preceded by a + symbol,
followed by the % operator and a single character describing the format. Following are
some of the formats –

 To display only the month, one can use +%m as a specifier. For example,
$date +%m
10 //indicates October.

 To display month name, use +%h as below –
$date +%h
Oct

 +%d for day of month (1 – 31)
+%y for last two digits of the year

 +%H, +%M and +%S indicates hour, minute and second respectively.
 One can combine more than one option by enclosing them in double quotes, and

keeping + symbol outside the quote. For example, combination of month and month
name –
$date +”%h %m”
Oct 10
script:
The script command is used to record the session in a file. When you have are doing
some important work, and would like to keep a log of all your activities, you should use
script command immediately after logging in. For example,
$script
Script started, file is typescript
$
Now onwards, whatever you type, that will be stored in the file typescript. Once the
recording is over, you can terminate the session by using exit command.
$exit
Script done, file is typescript
$
To view the file typescript, one can use cat command.
Note that, the usage of script command overwrites any existing file with name typescript. If
you want to append the new content to existing file, then use –a as below –
$script –a
Now, the previous typescript will be appended with the activities of this session.
If you want to create your own file instead of typescript file, then give the required filename
as –
$script mylogfile
Now, the activities of this session will be stored in the file mylogfile.
NOTE that, some activities like the commands used in the full-screen mode like vi editor
will not be recorded properly when we record session using script command.
tty:
The command tty (teletype) is used to know name of the terminal. For example,
$tty

/dev/tty01

The above statement indicates that tty01 is the name of the terminal and it is within the

directory dev. The dev is under root directory.

NOTE that, UNIX treats all devices as files, and tty01 is one of the files under file system.

In UNIX, just like users, even terminals, disks and printers also have the name and all
these are treated as files. Even the commands are also files in UNIX.
Some the systems may display the statement as below when tty command is given –
$tty

/dev/pts/1

Here, pts/1 is the name of the terminal.
2.b. Explain the following in detail with examples.
 i)read ii)command line argument iii)exit status of a command.
i)read

The read statement is the internal tool of the shell for taking input from the user. This will help the
scripts to become interactive.
 example –
read fname lname
ii)command line arguments
Arguments can be passed to a shell script through the command line, while running the script. Such
command line arguments are assigned to special variables known as positional parameters. The name of
the program itself is treated as first argument and stored in positional parameter $0. Further arguments
given by the user are sequentially stored in parameters $1, $2 and so on. Note that, these are not called
as shell variables (because, name of shell variables starts with a character). Some of the special
parameters used by the shell are listed in Table

iii)exit status of the command
Whenever a shell command gets executed, its execution status is stored in a special parameter $?. If the
command is executed successfully, then 0 will be stored (indicating true). Otherwise, some non-zero
number (indicating false) is stored in $?. It is called as exist status of a command. This parameter always
contains the exit status of the last command which has been executed. Consider few examples:
 Ex1: Successful Execution
$echo “Date: `date`” ;
echo “Exit Status: $?”
Date: Wed Oct 18 21:25:29 IST 2017 Exit Status: 0
 Here, the date command is executed within echo. As, it could execute successfully, the exit status
parameter will be obviously 0.
3.a. Explain the following commands.
 i)pwd ii)cd iii)mkdir iv)rmdir
i)pwd
Once a user logs in to the UNIX system, it places him in a specific directory (usually home directory) of
the file system. Though a user can move from one directory to other, for a given moment of time, he will
be in one directory, known as current directory. To know current directory, the pwd (print working
directory) command is used. The pwd command displays the absolute pathname as below –
 $pwd
/home/john
ii)cd
The cd command is used to move around the file system by changing the directory. This command can
be used in three different ways – If the user john is in his home directory and would like to move to

subdirectory called as progs, then the command should be given as – $ cd progs # user is moved to
progs directory now $ pwd # verify this using pwd /home/john/progs
mkdir:
This is the command used to create a new directory. Directories can be used to have a
collection of files under a common name.
$mkdir docs
$_
The mkdir command has created directory viz. docs. But, the command has not shown any
output, but just displays the prompt. Many a times, UNIX commands do not display any
output, but does the job internally. Here, mkdir has created the directory and that can be
confirmed using ls command.
Note that, UNIX internally treats a directory also as a file.
iv)rmdir
To remove (or delete) a directory, the rmdir command is used. Few important points about this
command are discussed here – A directory has to be empty before removing it. That is, it should not
contain any files or subdirectories. To remove one directory, use statement like – $rmdir test
#removes the directory test
3.b. Explain the UNIX file system with a neat diagram.
Unix file system is a logical method of organizing and storing large amounts of information in a way that
makes it easy to manage. A file is a smallest unit in which the information is stored. Unix file system has
several important features. All data in Unix is organized into files. All files are organized into directories.
These directories are organized into a tree-like structure called the file system. Files in Unix System are
organized into multi-level hierarchy structure known as a directory tree. At the very top of the file
system is a directory called “root” which is represented by a “/”. All other files are “descendants” of
root.

Directories or Files and their description –
• / : The slash / character alone denotes the root of the filesystem tree.
• /bin : Stands for “binaries” and contains certain fundamental utilities, such as ls or cp, which are
generally needed by all users.
• /boot : Contains all the files that are required for successful booting process.
• /dev : Stands for “devices”. Contains file representations of peripheral devices and pseudo-devices.
• /etc : Contains system-wide configuration files and system databases. Originally also contained
“dangerous maintenance utilities” such as init, but these have typically been moved to /sbin or
elsewhere.
• /home : Contains the home directories for the users.
• /lib : Contains system libraries, and some critical files such as kernel modules or device drivers.
• /media : Default mount point for removable devices, such as USB sticks, media players, etc.
• /mnt : Stands for “mount”. Contains filesystem mount points. These are used, for example, if the
system uses multiple hard disks or hard disk partitions. It is also often used for remote (network)
filesystems, CD-ROM/DVD drives, and so on.
• /proc : procfs virtual filesystem showing information about processes as files.
• /root : The home directory for the superuser “root” – that is, the system administrator. This account’s
home directory is usually on the initial file system, and hence not in /home (which may be a mount point
for another filesystem) in case specific maintenance needs to be performed,
during which other filesystems are not available. Such a case could occur,
for example, if a hard disk drive suffers physical failures and cannot be properly mounted.

• /tmp : A place for temporary files. Many systems clear this directory upon startup; it might have tmpfs
mounted atop it, in which case its contents do not survive a reboot, or it might be explicitly cleared by a
startup script at boot time.
• /usr : Originally the directory holding user home directories,its use has changed. It now holds
executables, libraries, and shared resources that are not system critical, like the X Window System, KDE,
Perl, etc. However, on some Unix systems, some user accounts may still have a home directory that is a
direct subdirectory of /usr, such as the default as in Minix. (on modern systems, these user accounts are
often related to server or system use, and not directly used by a person).
• /usr/bin : This directory stores all binary programs distributed with the operating system not residing
in /bin, /sbin or (rarely) /etc.
• /usr/include : Stores the development headers used throughout the system. Header files are mostly
used by the #include directive in C/C++ programming language.
• /usr/lib : Stores the required libraries and data files for programs stored within /usr or elsewhere.
• /var : A short for “variable.” A place for files that may change often – especially in size, for example e-
mail sent to users on the system, or process-ID lock files.
• /var/log : Contains system log files.
• /var/mail : The place where all the incoming mails are stored. Users (other than root) can access their
own mail only. Often, this directory is a symbolic link to /var/spool/mail.
• /var/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.

4.a. Describe the seven attributes of the ls –l command.
Output in Multiple Columns (–x) : When there are many files, it is better to display them in multiple
columns. Modern versions of ls do that by default (without any options), but if it doesn’t happen in your
system, you can use –x option as – $ ls –x Thesis Shell1.sh Shell2.sh ShellPgms Emp.txt cmd.c helpdir
 Identifying Directories and Executables (–F) : The ls command displays files as well as directories. To
know which of them are directories and executable files, one can use –F option. When –F option is
combined with –x, it produces multicolor output.
 $ ls –Fx
Thesis/ Shell1.sh* Shell2.sh* ShellPgms/ Emp.txt cmd.c helpdir/
 Here, the symbols * and / are type indicators. The * indicates that the file contains executable code,
and / refers to a directory.
 Showing Hidden Files Also (–a): If we want to see hidden files also, we use –a (all) option for ls. There
are certain hidden files starting with a dot, which normally don’t get displayed with just ls command.
 $ ls –a
. .. .exrc Thesis .emacs .gnome2 Shell1.sh

Note that, the first two files displayed are . and .. indicating current and parent directories.

 Listing specific directory contents: If you want to display the contents of only specific subdirectories,
you can give the name along with ls as shown below –
$ ls ACMPaper ShellPgms
 ACMPaper: acm.aux acm.bib acm.pdf runtex
acm.tex sig.pdf
 ShellPgms:

caseEx.sh first.sh menu.sh test
 hello.c

 Recursive Listing (–R): This option lists all files and subdirectories in a directory tree. That is, contents
of subdirectories also will be displayed recursively till there is no subdirectory is left out.
$ ls –R .:
Thesis
 Shell1.sh Shell2.sh
 ShellPgms
 Emp.txt cmd.c
 ./Thesis: Chap1.aux Chap1.bib Chap1.tex Chap1.pdf Annex.aux Annex.pdf
 ./ShellPgms: caseEx.sh first.sh menu.sh test hello.c
 ./ShellPgms/helpdir: Test.c here.sh try.sh
 One can observe that, the –R option starts display with the current directory (.). Then it displays the
contents of all subdirectories under current directory. Later it goes one level down and so on.
ls –l option:
Listing File Attributes The –l option of ls command is used for listing the various attributes like
permissions, size, ownership etc. of a file. The output of ls –l is referred to as the listing. The –l option
can be combined with other options for displaying other attributes, or ordering the list in a different
sequence. The command ls use inode of a file to fetch its attributes. Consider the following example of ls
–l which displays seven attributes of all files in the current directory.
 $ ls -l total 144 -rw-rw-r-- 1 john john
280 Jan 30 09:56 caseEx.sh -rw-rw-r-- 1 john john 104 Feb 3 06:40 cmdArg.sh
ls –d option: Listing Directory Attributes If we want to list the attributes of only the directory, but not its
contents, we can use –d option as below –
 $ ls –ld myDir
 drwxrwxr-x 2 john john 4096 Feb 6 05:48 myDir
4.b Explain about hard link and symbolic link with examples.
Hard Link:
A link can be created to a file using ln command. The following command is used to create hard link for
an existing file emp.lst with a non-existing file employee:
 $ln emp.lst employee
$ ls –li emp.lst employee
 29314 –rwxr-xr-x 2 john metal 915 May 5 03:34 emp.lst
 29314 lrwxr-xr-x 2 john metal 915 May 5 03.34 employee
The hard links has certain limitations – One cannot have two linked filenames in two file systems. That
is, one cannot link a filename in the /usr file system to another in /home file system. One cannot link a
directory even within the same file system.
 The symbolic links or soft links will overcome these limitations. The symbolic link can be thought of as a
fourth type of a file (apart from 3 types discussed till now – ordinary, directory and device). Unlike the
hard link, a symbolic link doesn’t have the file’s contents. But, it simply provides the pathname of the file
that actually has the contents. Shortcut keys in windows are the best examples for symbolic links.
 The ln command with –s option is used to create symbolic link as below –
 $ ln –s note note.sym
 $ ls –li note note.sym
 9948 –rw-r--r-- 1 john metal 915 May 5 03:34 note
 9952 lrwxrwxrwx 1 john metal 4 May 5 03:34 note.sym->note
5.a. Explain the following commands.
 i)head ii)tail iii)pr iv)cut v)paste
i)head

The head command is used to display top of the file. By default, it displays first 10 lines of the file. The -
n option can be used with a required line–count to display those many lines. For example,
$ head -n 3 emp.lst
 2233|a.k. shukla|g.m.|sales|12/12/52|6000
 9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
 Here, -n is used with the count 3; hence the top 3 lines of the file will be displayed.
ii)tail
The tail command is opposite to head. That is, it displays last 10 lines by default. By specifying the count
with –n option, we can display only the required number of lines as below –
 $ tail -n 3 emp.lst
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
ii)pr
The pr command prepares a file for printing by adding suitable headers, footers, and
formatted text. When used with a filename as argument, pr doesn’t behave like a filter:
$ pr group1
May 06 10:38 1999 group1 Page 1
root:x:0:root These seven lines are the original
bin:x:1:root,bin,daemon contents of group1
users:x:200:henry,image,enquiry
adm:x:25:adm,daemon,listen
dialout:x:18:root,henry
lp:x:19:lp
ftp:x:50:
... blank lines ...
pr adds five lines of margin at the top (simplified here) and five at the bottom. The header
shows the date and time of last modification of the file, along with the filename and
page number. We generally don’t use pr like this. Rather, we use it as a “preprocessor”
to impart cosmetic touches to text files before they are sent to the printer:

$ pr group1 | lp
Request id is 334
Since pr output often lands up in the hard copy, pr and lp form a common pipeline sequence.
Sometimes, lp itself uses pr to format the output, in which case this piping is not required.

iii)Cut
Cutting Columns (-c) To extract specific columns, you need to follow the -c option
with a list of column numbers, delimited by a comma. Ranges can also be specified using
the hyphen. Here’s how we extract the first four columns of the group file:
$ cut -c1-4 group1 -c or -f option always required
root
bin:
user
adm:
dial
lp:x

ftp:
v)paste
The paste command is used to paste the contents into a file vertically. One can view two files side by
side by pasting them. To understand the working of paste command, first let us create two files by
cutting some fields from emp.lst.

The file cutlist1 is created as below, which contains 2nd and 3rd fields (name and designation) of the file
emp.lst.
$ cut -d \| -f 2,3 emp.lst > cutlist1
 $ cat cutlist1
 a.k. shukla|g.m. jai sharma|director sumit
chakrobarty|d.g.m barun sengupta|director
5.b. Explain about regular expression in detail. What are the various wild card characters used in
regular expressions.
A regular expression (regex) is defined as a pattern that defines a class of strings. Given a
string, we can then test if the string belongs to this class of patterns. Regular expressions
are used by many of the UNIX utilities like grep, sed, awk, vi etc. A regular expression is a
set of characters that specify a pattern. Regular expressions are used when we want to
search for specify lines of text containing a particular pattern. Regular expressions search
for patterns on a single line, and not for patterns that start on one line and end on another.

The Character Class
A regular expression lets to specify a group of characters enclosed within a pair of
rectangular brackets []. The match is performed for a single character in the group. For
example, the expression [ra] matches either r or a.
In the previous section, we have seen that grep with –e option is used to compare multiple
patterns. Now, let us write the regular expression for searching different spellings of
agarwal in emp.lst.
$ grep "[aA]g[ar][ar]wal" emp.lst

3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
The *
The * refers to the immediately preceding character. It matches zero or more occurrences
of the previous character. Hence, the pattern g* matches null string or following strings –
g, gg, ggg, gggg ………
As the * can match even a null string, if you want to search a string beginning with g, do not
give pattern as g* , instead give as gg*.
Now check the following example, where all three types of spellings of agarwal can be
searched.
$ grep "[aA]gg*[ar][ar]wal" emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
The Dot (.)
The dot (.) matches a single character. For example, the pattern 2… matches a fourcharacter
pattern beginning with a 2. The combination of * and dot (.*) constitutes a very
useful regular expression. It signifies any number of characters or none. For example,
when you are not sure about the initial of saxena, you can give the expression as -
$ grep ".*saxena" emp.lst
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
Specifying Pattern Locations (^ and $)
When we need to search for a pattern either at the beginning or at the end of a line, we can
use ^ and $ respectively. For example, following command searches all the employees
whose employee ID starts with 2.
$ grep "^2" emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
2365|barun sengupta|director|personnel|05/11/47|7800
2476|anil aggarwal|manager|sales|05/01/59|5000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

6.a. Describe about grep command in detail with any five options used in it.
The grep command scans its input for a pattern and displays lines contain the pattern, the
line numbers or filenames where the pattern occurs. The syntax is –
grep options pattern filename(s)
Various options for grep command are given in Table 3.3. They are discussed with suitable
examples below.
Table 3.3 Options for grep command

 Ignoring Case (-i): When we are searching for a pattern, but not sure about the case, -i

option is used. It ignores the case of the text and displays the result. For example,
$ grep -i 'agarwal' emp.lst
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

 Deleting Lines (-v): The –v (inverse) option selects all lines except those containing the
pattern. The following example selects all lines in the file emp.lst except for those
containing the term director.
$ grep -v 'director' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
5423|n.k. gupta|chairman|admin|08/30/56|5400
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
Displaying Line Numbers (-n): This option displays the line numbers containing the
pattern along with the actual lines. For example,
$ grep -n 'marketing' emp.lst
3:5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
11:6521|lalit chowdury|director|marketing|09/26/45|8200
14:2345|j.b. saxena|g.m.|marketing|03/12/45|8000
15:0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Counting Lines Containing Pattern (-c): A pattern may be present in a file multiple
times. If we would like to know how many times it has appeared, -c option can be used.
The following example shows how many times the pattern director has appeared in the
file emp.lst.
$ grep -c 'director' emp.lst
4

 Displaying Filenames (-l): The –l (el) option is used to display the names of files
containing the pattern. Assume there are there are two more files test.lst and testfile.lst
along with emp.lst. Now, let us check in which file(s) the pattern manager is present.
$grep –l ‘manager’ *.lst
emp.lst
test.lst

 Matching Multiple Patterns (-e): When we would like to search for multiple patterns in
a file, we can use –e option. For example,

$ grep -e "Agarwal" -e "aggarwal" -e "agrawal" emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Taking Patterns from a File (-f): If various patterns are stored in a file each in different
line, then –f option can be used by giving that filename as one of the arguments. For
example, assume there is a file pattern.lst as –
$cat >pattern.lst
manager
executive
Then, give the command as –
$grep –f pattern.lst emp.lst
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

6.b. Write about line addressing and context addressing with examples.
The sed command is a multipurpose tool which combines the work of several filters. It
performs non-interactive operations on a data stream. It allows selecting lines and running
instructions on them.
An instruction combines an address for selecting lines, with an action to be taken on them.
The sed command uses such instructions. The syntax is –
sed options ‘address action’ file(s)
Line Addressing: Here, address specifies either one line number to select a single
line or a set of two numbers to select a group of contiguous lines.
 Option Description

In line addressing, the instruction 3q can be broken into the address 3 and the action q
(quit). So, to display only first 3 lines, (similar to head –n 3) use the following statement –
$ sed '3q' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
In the above example, 3 lines will be displayed and then quits.
Generally, the p (print) command is used to display lines. But, this command behaves

strange – it prints selected lines as well as all lines. Hence, the selected lines will appear
twice. To suppress this feature of p, the –n option has to be used. The following example
selects the lines 5 through 7.
$ sed -n '5,7p' emp.lst
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
The $ symbol can be used to print only the last line as below –
$ sed -n '$p' emp.lst
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
The sed command can be used to select multiple groups of lines. In that case, each
address has to be given in a different line, but enclosed within a single pair of quotes as
shown below –
$ sed -n '1,2p
> 7,9p
> $p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
The sed command uses ! (exclamatory mark) as a negation operator. Assume, we would
like to select first 2 lines of the file. Note that, selecting first two lines means – not selecting
3rd line to end. So, the command can be used as below –
$ sed -n '3,$!p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
Here, ! is for p indicating not to print lines from 3 to end.
Using Multiple Instructions (-e and –f) : In the previous section, we have seen that
when multiple groups of lines have to be selected, the pattern should be given in different
lines with a line-break in-between. To avoid that, sed uses –e option. This option allows to
enter as many instructions as you wish, in a single line, where each instruction is preceded
by the option –e. For example, the following command selects multiple lines (1 to 2, 7 to 9
and last line) –
$ sed -n -e '1,2p' -e '7,9p' -e '$p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
When we have too many instructions to use or when we have a set of a common
instructions that are executed often, better to store them in a file. And, then use –f option
with sed command to read from that file and to apply the instructions on input file. Consider
the example given below. Here, we have created a file instr.dat containing required
instructions. Then use the sed command.
$ cat >instr.dat
1,2p
7,9p
$p
$ sed –n –f instr.dat emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
Context Addressing:

Context addressing allows to specify one or two patterns to locate the lines. The patterns
must be bounded by a / on both the sides. When a single pattern is specified, all lines
containing the pattern are selected. The following example is for selecting all the lines
containing the pattern director.
$ sed -n '/director/p' emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
6521|lalit chowdury|director|marketing|09/26/45|8200
One can give a comma-separated list of context addresses to select a group of lines. For
example, to select all the lines between dasgupta and saxena use the following statement –
$ sed -n '/dasgupta/,/saksena/p' emp.lst
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
One can mix line addressing and context addressing. If we want to select all lines from 1st
line till dasgupta, use the command as below –
$ sed -n '1,/dasgupta/p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
Regular expressions can be used as a part of context address. For example, the following
command selects different spellings of agarwal.
$ sed -n '/[aA]gg*[ar][ar]wal/p' emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
One more example of sed command including regular expression is given below. It selects
all lines containing saksena, saxena, and gupta. Note that, here also two different patterns
should be given on different lines.
$ sed -n '/sa[kx]s*ena/p
> /gupta/p' emp.lst
2365|barun sengupta|director|personnel|05/11/47|7800
5423|n.k. gupta|chairman|admin|08/30/56|5400
1265|s.n. dasgupta|manager|sales|09/12/63|5600
The characters ^ and $ also can be used as a part of regular expression with sed
command. Following example shows the people born in 1950. Note that, the five dots after
50 in the expressions indicate 5 characters (a delimiter | and 4 characters indicating salary)
present before the end of line ($).
$ sed -n '/50.....$/p' emp.lst
9876|jai sharma|director|production|03/12/50|7000
4290|jayant Chodhury|executive|production|09/07/50|6000

7.a. Explain about awk-filter with syntax and example.
The syntax of awk command is –
awk options ‘selection_criteria {action}’ file(s)
Here, the selection_criteria is a form of addressing and it filters input and selects lines. The
action indicates the action to be taken upon selected lines, which must be enclosed within

the flower brackets. The selection_criteria and action together constitute an awk program
enclosed within single quotes. The selection_criteria in awk can be a pattern as used in
context addressing. It can also be a line addressing, which uses awk’s built-in variable NR.
The selection_criteria can be even a conditional expressions using && and || operators.
Consider the following example of awk command to select all the directors in the file
emp.lst.
$ awk '/director/{print}' emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
6521|lalit chowdury|director|marketing|09/26/45|8200
Here, the selection criteria is /director/which selects the lines containing director. The
action is {print}. If the selection criteria is missing, then action applies to all the lines. If
action is missing, then entire line is printed.
The print statement prints the entire line, when it is used without any field specifier. It is a
default action of awk.
7.b. What are the various built-in operators used in awk? Explain.
The Comparison Operator
The relational operators like greater than (>), less than (<), comparison (==), not equal to
(!=) etc. can be used with awk.
Ex1. The command given below is to select the lines containing director OR (||) chairman.
As the 3rd field of the file emp.lst has the designation, we can compare it directly.
$ awk -F "|" '$3=="director" || $3=="chairman" {
> printf "%-20s %-12s \n", $2, $3}' emp.lst
jai sharma director
barun sengupta director
n.k. gupta chairman
chanchal sanghvi director
lalit chowdury director
Ex2. Using not equal to operator (!=) and AND (&&) operator, we can achieve the negation
of list obtained in Ex1. That is, following command displays all the lines not containing
director and chairman.
$ awk -F "|" '$3 != "director" && $3 != "chairman" {
>printf "%-20s %-12s \n", $2, $3}' emp.lst
a.k. shukla g.m.
sumit chakrobarty d.g.m
karuna ganguly g.m.
s.n. dasgupta manager
jayant Chodhury executive
anil aggarwal manager
shyam saksena d.g.m
sudhir Agarwal executive
j.b. saxena g.m.
v.k. agrawal g.m.
The Regular Expression Operators: ~ and !~
The awk provides two operators for handling regular expressions. The ~ operator is used to
match a regular expression and !~ is used to negate the match. These operators must be
used only with field specifiers like $1, $2 etc.

Ex1. In the below example, the 2nd field ($2) is matched with regular expressions that may
result in any of Chodhury, chowdury, saksena, saxena. Observe the OR (||) operator used.
$ awk -F "|" '$2 ~ /[cC]how*dh*ury/ ||
> $2 ~ /sa[kx]s?ena/ {print}' emp.lst
4290|jayant Chodhury|executive|production|09/07/50|6000
6521|lalit chowdury|director|marketing|09/26/45|8200
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
Number Comparison
awk can handle both integer and floating type numbers. Relational operators also can be
applied on them. Consider following examples:
Ex1. Listing of all the employees whose salary is more than 7500 can be done as below –
$ awk -F"|" '$6>7500 {printf "%-20s %d\n",$2,$6}' emp.lst
barun sengupta 7800
lalit chowdury 8200
sudhir Agarwal 8000
j.b. saxena 8000
v.k. agrawal 9000
Here, $6 is the 6th field (salary), is being compared with 7500.
Ex2. One can combine regular expression matching and numeric comparison. Following
example lists out the people who have either born in 1945 OR getting the salary more than
8000.
$ awk -F"|" '$6>8000 || $5~/45$/{print $2, $5, $6}' emp.lst
lalit chowdury 09/26/45 8200
j.b. saxena 03/12/45 8000
v.k. agrawal 12/31/40 9000
In the file emp.lst, 5th field is date of birth. In this field, at the end we have year of birth.
Hence, in the above example, $5 is matched with /45$/ indicated 45 is at the end (recollect
meaning of $ in regular expressions).
7.c. Explain about BEGIN and END sections in awk, with an example program.
The awk statements are usually applied on all lines selected by address (selection criteria).
But, if we want to print something before the processing starts or after completing the
process, then BEGIN and END sections are useful.
The BEGIN and END sections are optional and have syntax as –
BEGIN{ action}
END { action}
The usage of these sections are depicted in the below given example. Here, in the BEGIN
section we will print the heading for the columns and in the END section, we will print
average basic pay. Let us first create a file newPayroll.awk (either using vi editor or cat
command) as shown below –
newPayroll.awk
Note that, after the BEGIN section, we will write the selection criteria ($6>7500) and then
the action within a pair of curly braces (flower brackets) as per the syntax of awk
commands.
Now, run the file using the command –
$awk –F “|” –f newPayroll.awk emp.lst
BEGIN {
printf "SlNo \t Name \t\t Salary\n"

}
$6>7500{
count++
total += $6
printf "%3d %-20s %d\n", count, $2, $6
}
END{
printf "\nThe average salary is: %d\n", total/count
}
8.a. Explain the following commands.
 i)export ii)eval iii)exec
export
The values stored in the shell variables are local to the shell and they are not passed on to
the child shell. But, one can use export command to pass the variables used in the parent
shell into the child shell.
x=10 #x is 10 on a parent shell
$ export x #parent x is exported to child
$ sh ex.sh #child shell is spawned to execute ex.sh
The value of x is 10 #value 10 got printed for x
The value of x is 20 #x is 20 after new assignment
$ echo $x
10 #value available with parent shell is printed
ii)eval
The eval command will take an argument and construct a command out of it, which will be
executed by the shell. The eval statement tells the shell to take eval’s arguments as
command and run them through the command-line.
To understand the concept, let us first define few strings and then try to display the value of
string with a numbered variable.
$ text1= “Emp ID:”
$ text1= “Name:”
$ text1= “Designation:”
$ x=1
$ echo $text$x
1 #output
Here, we expect the output to be Emp ID: because, $x is 1 and $text$x would be
text1. But, the shell evaluates the command line from left to right. So, it first encounters
$text which is not defined at all. Then it evaluates $x. Hence we will get the output as 1.
The eval statement evaluates a command line twice. In the first pass, it suppresses some
evaluation and performs it only in the second pass. This is what we want in our previous
example. So, if we escape the first $ symbol in $text$x, then the first pass evaluates only
$x. So, we will get only text1. In the second pass, we have to evaluate it using eval as
shown below –
$eval echo \$text$x
Emp ID: #displayed value of text1
Consider one more example in which we have a variable x assigned as 10 and another
variable y which is assigned as x. Here, we would like to retrieve the value of x through y as
shown below –
$ x=10

$ y=x
$ echo $y #it prints just x, but not 10
x
$ eval echo \$$y #escape first $ using \
10 #to get 10
In the above example, when we use the statement,
$ eval echo \$$y
the first $ symbol is escaped using slash. So, only $y is evaluated to get x. Then eval is
used to evaluate value of x and result would be 10.
iii)exec
When exec command is used with another command externally on the command line, a
new process is not spawned. Instead, the current process is overlaid with the new
command. In other words, the exec command is executed in place of the current shell
without creating a new process. This is useful for shell programmers when they need to
overwrite the current shell itself with the code of another program. When the exec is
preceded with any UNIX command, that command overwrites the current process – most of
the times the shell. As the shell is overwritten by some other command, the user will be
logged out immediately after the completion of that command.
Consider the following example –
$ exec date
Tue Jan 28 21:25:53 IST 2017
login:
Observe that, after displaying the date, login prompt is appeared. This indicates that the
user is logged out because the exec has made the date command to overwrite the shell
itself.
8.b. Desribe the in-built functions of awk.
There are several built-in functions in awk for performing arithmetic and string operations
as shown in Table 4.2. Most of these functions behave similar to that in C programming.
The arguments of the function are enclosed within parentheses and separated by comma.
These functions are explained hereunder:

 int(x): This function calculates the integral portion of a number, without rounding it
off. For example,
$awk 'BEGIN{ print int(3.7)}'
3

 sqrt(x): It is used to compute the square root of the number x.
$awk 'BEGIN{ print sqrt(25)}'
5

 length: It determines the length of its argument. If no argument is present, the entire
line is assumed to be the argument. One can use it to locate the lines whose length
exceeds a specific number of characters. The following example lists all the lines
from the file emp.lst where number of characters is more than 50.
$awk -F"|" 'length>50' emp.lst
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
4290|jayant Chodhury|executive|production|09/07/50|6000
6521|lalit chowdury|director|marketing|09/26/45|8200
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

 index(s1, s2): It determines the position of a string s2 within a larger string s1. This
function is usually helpful in validating single character fields. Consider the following
examples:
Ex1. Checking for the character b in text abcde. The result displayed is 2.
$awk 'BEGIN{
> x=index("abcde", "b")
> print x}'
2
Ex2. Checking for substring cd, whose position is 3.
$ awk 'BEGIN{
> x=index("abcde", "cd")
> print x}'
3
substr(stg, m, n): This function extracts a substring of size n characters from a
string stg starting from the position m. For example, following code extracts 3
characters from the string hello how are you? starting from 7th character.
$ awk 'BEGIN{
> x=substr("hello how are you?", 7,3)
> print x}'
how
This function can be used to select those people who have born between 1945 and
1951 using the following code –
$awk -F "|" 'substr($5, 7,2)>45 && substr($5,7,2)<52' emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
4290|jayant Chodhury|executive|production|09/07/50|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

 split(stg, arr, ch): This function breaks up a string stg on the delimiter ch and stores
the fields in an array arr[]. The following example uses space (given within double
quotes as a 3rd argument to split function) as a delimiter and stores each word of the
string hello how are you? in the array arr.
$ awk 'BEGIN{
split("hello how are you?", arr, " ")
printf "%s\n%s\n%s\n%s\n",arr[1],arr[2],arr[3],arr[4]}'

hello
how
are
you?

 system: This function can be used for running UNIX commands within awk. For
example,
$ awk 'BEGIN{
> system("date")
> system("pwd")}'
Mon Jan 1 08:54:14 IST 2007
/home/john
9.a. What are the privileges of the system administrator?
A system administrator (or super user or root user) has vast powers and access to almost
everything in UNIX system. System admin is responsible for managing entire system
like maintaining user accounts, security, disk space, backups etc.
Any user can acquire the status of superuser, if he/she knows the root password. For
example the user john may become superuser using the command su as shown –
$ su
password: ******* #give root’s password
pwd #working directory unchanged
/home/john
Following are some of the important privileges of a system administrator:

 Changing contents or attributes (like permission, ownership etc) of any file. He/she
can delete any file even if the directory is write-protected.

 Initiate or kill any process.
 Change any user’s password without knowing the existing password
 Set the system clock using date command.
 Communicate with all users at a time using wall command.
 Restrict the maximum size of files that users can create, using ulimit command.
 Control user’s access to the scheduling services like at and cron.
 Control user’s access to various networking services like FTP, SSH (Secured Shell)

etc.
9.b Explain the startup and shut down procedure in UNIX.
Whenever the system is about to start or about to shutdown, series of operations are
carried out. We will discuss few of such operations here.

 Startup: When the machine is powered on the system looks for all peripherals and
then goes through a series of steps that may take some time to complete the boot
cycle. The first major event is the loading of the kernel (/kernel/genunix in
Solaris and /boot/vmlinuz in Linux) into memory. The kernel then spawns init,
which in turn spawns further processes. Some of these processes monitor all the
terminal lines, activate the network and printer. The init becomes the parent of all
the shells.
A UNIX system boots to any one of two states (or mode) viz. single user mode or
multiuser mode. This state is represented by a number or letter called as run level.
The default run level and the actions to be taken for each run level are controlled by
init. The two states are discussed here –
o Singer-user Mode: The system admin uses this mode to perform
administrative tasks like checking and backing up individual file systems.

Other users are prevented from working in single-user mode.
o Multiuser Mode: Individual file systems are mounted and system daemons
are started in this mode. Printing is possible only in multiuser mode.
The who –r command displays the run level of our system:
$ who -r
. run-level 3 2007-01-06 11:10 last=S
The machine which runs at level 3 supports multiuser and network operations.

 Shutdown: While shutting down the system, the administrator has certain roles. The
system shutdown performs following activities –
o Through the wall command notification is sent to all the users about system
shutdown and asks to logout.
o Sends signals to all running processes to terminate normally.
o Logs off the users and kills remaining processes
o Un-mounts all secondary file systems.
o Writes file system status to disk to preserve the integrity of file system
o Notifies users to reboot or switch-off, or moves the system to single-user
mode.

9.c. Explain about internal and external commands.
From the process point of view, the shell can recognize three types of commands as
below–

 External Commands: The most commonly used UNIX utilities and programs like
cat, ls, date etc. are called as external commands. The shell creates a process for
each of such commands when they have to be executed. And, the shell remains as
their parent.

 Shell Scripts: The shell spawns another shell to execute shell scripts. This child
shell then executes the commands inside the script. The child shell becomes the
parent of all the commands within that script.

 Internal Commands: Some of the built-in commands like cd, echo etc. are internal
commands. They don’t generate a process and are executed directly by the shell.
Similarly variable assignment statements like x=10 does not create a child process.

10.a. Explain the following commands.
 i)at ii)batch iii)nice iv)aliases
i)at
The at command takes one argument as the time specifying when the job has to be
executed. For example,
$ at 10:44 #press enter by giving time
at> ls –l > out.txt #Give the command to be executed
at> <EOT> #Press [CTRL+d]
job 10 at 2018-01-01 10:44
The job goes to the queue and at 10.44 on Jan 1st, 2018 the command ls –l will be
executed and the output would be stored in the file out.txt. One can check this file later
for the output.
ii) batch
The batch command schedules the job when the system overhead reduces. This
command does not use any arguments, but it uses internal algorithm to determine the

actual execution time. This will prevent too many CPU-hungry jobs from running at the
same time.
$ batch < evalEx.sh #evalEx.sh will be executed later
job 15 at 2007-01-09 11:44
Any job scheduled with batch goes to special at queue from where it will be taken for
execution.
iii)nice
In UNIX system, processes are executed with equal priority, by default. But, if high-priority
jobs make demand, then they have to be completed first. The nice command with &
operator is used to reduce the priority of jobs. Then more important jobs have greater
access to the system resources.
To run a job with a low priority, use the command prefixed with nice as shown –
$nice wc emp.lst
15 31 741 emp.lst
iv)Aliases
The bash and ksh supports aliases (alternative names), which lets the user to assign any
shorthand names to frequently used commands. This is done with the command alias.
The ls –l command is used many times in UNIX. So, alias can be set for this command
as –
$ alias el=‘ls –l’
Now onwards, in place of ls –l, user can use el. Note that, there must not be a space
before and after = symbol in the above statement.
When we need to use cd command frequently to change directory to some long pathname
as /home/john/ShellPgms/Scripts, then alias can be set as –
$ alias cdSys=“cd /home/john/ShellPgms/Scripts”
So, we can just use cdSys to change the directory.
The alias set once can be revoked using the command unalias. So, to unset the alias
cdSys, use the statement as –
$ unalias cdSys
10.b. Write an awk script to computer gross salary of an employee accordingly to rule given
below.
If basic salary is <10000 then HRA=15% of basic & DA=45% of basic if basic salary is>=
10000 then HRA=20% of basic & DA=50% of basic.
BEGIN{
 printf"enter the basic salary:\n"
 getline bs<"/dev/tty"
 if(bs<10000)
 {
 hra=.15*bs
da=.45*bs
 }
 else
 {
 hra=.2*bs
 da=.5*bs
 }
 gs=bs+hra+da
 printf "gross salary=Rs.%.2f\n",gs
}

