

1

Internal Assesment Test - I

Sub: Operating Systems Code: 17MCA24

1 (a) What is an operating System?

 An operating system or OS is a system software program that enables the computer hardware to

communicate and operate with the computer software. Without a computer operating system, a

computer and software programs would be useless.

 When computers were first introduced, the user interacted with them using a command

line interface, which required commands. Today, almost every computer is using a Graphical User

Interface (GUI) operating system that is much easier to use and operate.

 Examples of computer operating systems - Microsoft Windows 10, Linux

03

 (b) What are the various services of an operating system? Explain briefly

An OS provides an environment for the execution of programs. Also, it provides certain services to the

programs and its users. Though these services differ from one OS to the other, following are some general

services provided by any OS. Program execution: The system must be able to load a program into

memory and to run that program. The program must be able to end its execution, either normally or

abnormally (indicating error).

 I/O operations: A running program may require I/O. This I/O may involve a file or an I/O device. For

efficiency and protection, users usually cannot control I/O devices directly. Therefore, the OS must provide

a means to do I/O.

 File-system manipulation: The OS must facilitate the programs to read and write the files. And also,

programs must be allowed to create and delete files by name.

 Communications: Processes may need to exchange information with each other. These processes may be

running on same computer or on different computers.

Communications may be implemented via shared memory, or by the technique of message passing, in

which packets of information are moved between processes by the OS.

 Error detection: The OS constantly needs to be aware of possible errors. Errors may occur in any of CPU,

memory hardware, I/O devices, user program etc. For each type of error, the OS should take the appropriate

action to ensure correct and consistent computing. OS also has another set of functionalities to help the

proper functioning of itself.

 Resource allocation: When multiple users are logged on the system or multiple jobs are running at the

same time, resources must be allocated to each of them. OS has to manage many resources like CPU cycles,

main memory, and file storage etc. OS uses CPU scheduling routines for effective usage of CPU. These

routines manage speed of the CPU, the jobs that must be executed, the number of registers available, and

such other factors.

 Accounting: We want to keep track of which users use how many and which kinds of computer

resources. This record keeping may be used for accounting (so that users can be billed) or simply for

accumulating usage statistics. Usage statistics may be a valuable tool for researchers who wish to

reconfigure the system to improve computing services.

07

https://www.computerhope.com/jargon/h/hardware.htm
https://www.computerhope.com/jargon/s/software.htm
https://www.computerhope.com/jargon/c/cui.htm
https://www.computerhope.com/jargon/c/cui.htm
https://www.computerhope.com/jargon/c/cui.htm
https://www.computerhope.com/jargon/g/gui.htm

2

 Protection: Information on a multi-user computer system must be secured. When multiple processes are

executing at a time, one process should not interfere with the others. Protection involves ensuring that all

access to system resources is controlled. System must be protected from outsiders as well. This may be

achieved by authenticating the users by means of a password. It also involves defending external I/O

devices, modems, network adapters etc. from invalid access.

2 (a) Describe in detail about the components of operating system and its responsibilities.

1. Process Management

2. Main Memory Management

3. File Management

4. I/O System Management

5. Secondary Storage Management

6. Networking

7. Protection System

8. Command-Interpreter System

Process Management

A process is a program in execution. A process needs certain resources, including CPU time, memory, files,

and I/O devices, to accomplish its task.

• Processes can create sub-processes to execute concurrently.

• A program by itself is not a process; a program is a passive entity, whereas a process is an active entity.

• The execution of a process must progress in a sequential fashion. The CPU executes one instruction of the

process after another until the process completes.

• Operating System processes: Those execute system code. • User processes: Those that execute user code.

The operating system is responsible for the following activities in connection with process management.

– Process creation and deletion.

– Process suspension and resumption.

– Provision of mechanisms for:

1) process synchronization

2) process communication

– Deadlock handling

Main Memory Management

Memory is a large array of words or bytes, each with its own address. It is a repository (storage) of quickly

accessible data shared by the CPU and I/O devices.

• Main memory is a volatile storage device. It loses its contents in the case of system failure.

• The operating system is responsible for the following activities in connections with memory management:

– Keep track of which parts of memory are currently being used and by whom.

– Decide which processes to load when memory space becomes available.

– Allocate and deallocate memory space as needed.

File Management

A file is a collection of related information defined by its creator. Commonly, files represent programs

(both source and object forms) and data.

• A file consists of a sequence of bits, bytes, lines, or records whose meanings are defined by their creators.

• The operating system is responsible for the following activities in connections with file management:

10

3

– File creation and deletion.

– Directory creation and deletion.

– Support of primitives for manipulating files and directories.

– Mapping files onto secondary storage.

– File backup on stable (nonvolatile) storage media.

• I/O System Management

The I/O system consists of:

– A buffer-caching system

– A general device-driver interface

– Drivers for specific hardware devices

• The O.S. hides the peculiarities of specific hardware devices from the user.

Secondary Storage Management

Since main memory (primary storage) is volatile and too small to accommodate all data and programs

permanently, the computer system must provide secondary storage to back up main memory.

• Most modern computer systems use disks as the principle on-line storage medium, for both programs and

data.

• The operating system is responsible for the following activities in connection with disk management:

– Free space management

– Storage allocation

– Disk scheduling

Networking

A distributed system is a collection of processors that do not share memory or a clock. Each processor has

its own local memory and clock.

• The processors in the system are connected through a communication network.

• A distributed system provides user access to various system resources.

• Access to a shared resource allows:

– Computation speed-up

– Increased data availability

– Enhanced reliability

Protection System

• Protection refers to a mechanism for controlling access by programs, processes, or users to both system

and user resources.

• The protection mechanism must:

– distinguish between authorized and unauthorized usage.

– specify the controls to be imposed.

– provide a means of enforcement.

Command-Interpreter System

Command-Interpreter system is a system program, which is the interface between the user and the operating

system.

• Command-Interpreter system is known as the shell.

• Some operating systems provide a user-friendly interface (mouse-based window) such as, Macintosh and

Microsoft Windows.

4

• Some operating systems provide text interface (commands are typed on keyboard) such as MS-DOS and

Unix shells.

Many commands are given to the operating system by control statements which deal with:

– process creation and management

– I/O handling

– secondary-storage management

– main-memory management

– file-system access

– protection

– networking

• The program that reads and interprets control statements is called variously:

– control-card interpreter

– command-line interpreter

– shell (in UNIX)

3 What is processor register? What functions does it serve

A processor includes a set of registers that provide memory. But, this memory is faster and smaller than the

main memory. These registers can be segregated into two types based on their functionalities as discussed

in the following sections.

User – visible Registers

These registers enable the assembly language programmer to minimize the main memory references by

optimizing register use. Higher level languages have an optimizing compiler which will make a choice

between registers and main memory to store variables. Some languages like C allow the programmers to

decide which variable has to be stored in register.

A user visible register is generally available to all programs. Types of registers that are available are: data,

address and condition code registers.

Data Registers: They can be assigned to different types of functions by the programmer. Sometimes, these

are general purpose and can be used with any machine instruction that performs operations on data. Still,

there are some restrictions like – few registers are used for floating-point operations and few are only for

integers.

Address Registers: These registers contain main memory addresses of data and instructions. They may be

of general purpose or may be used for a particular way of addressing memory. Few examples are as given

below:

o Index Registers: Indexed addressing is a common mode of addressing which involves adding and index to

a base value to get the effective address.

o Segment Pointer: In segmented addressing, a memory is divided into segments (a variable-length block of

words). In this mode of addressing, a register is used to hold the base address of the segment.

o Stack Pointer: If there is a user-visible stack addressing, then there is a register pointing to the top of the

10

5

stack. This allows push and pop operations on instructions stored in the stack.

\Control and Status Registers

The registers used by the processor to control its operation are called as Control and Status registers. This

registers are also used for controlling the execution of programs. Most of such registers are not visible to

the user. Along with MAR, MBR, I/OAR and I/OBR discussed earlier, following registers are also needed

for an instruction to execute:

 Program Counter: that contains the address of next instruction to be fetched.

 Instruction Register(IR): contains the instruction most recently fetched.

All processor designs also include a register or set of registers, known as program status

word (PSW). It contains condition codes and status information like interrupt enable/disable bit and

kernel/user mode bit.

Condition codes (also known as flags) are bits set by the processor hardware as the result of operations. For

example, an arithmetic operation may produce a positive, negative, zero or overflow result. Condition code

bits are collected into one or more registers. And, they are the part of a control register. These bits only can

be read to know the feedback of the instruction execution, but they can’t be altered

4 Explain the following types of OS:

i) Real Time ii) Multiprocessor System iii) Clustered System.

REAL-TIME SYSTEMS

A real-time system is used when there is a time requirements on the operation of a processor or the flow of

data. Thus, it is used as a control device in a dedicated application.

Sensors bring data to the computer. The computer must analyze the data and possibly adjust controls to

modify the sensor inputs. Systems that control scientific experiments, medical imaging systems, industrial

control systems, and certain display systems are realtime systems. Some automobile-engine fuel-injection

systems, home-appliance controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing must be done within the defined

constraints, or the system will fail. For instance, a robot arm must be instructed to halt before it reaches a

wall. A real-time system functions correctly only if it returns the correct result within its time constraints.

So in real-time system, a quick response is expected; whereas in batch system time constraints are not at all

there.

• Real-time systems may be hard or soft.

• A hard real-time system guarantees that critical tasks be completed on time.

• A soft real-time system is less restrictive, where a critical real-time task gets priority over

• other tasks, and retains that priority until it completes.

• But, soft real-time systems have limited utility than hard real-time systems. Given their lack of

deadline support, they are risky to use for industrial control and robotics.

• They are useful in areas like multimedia, virtual reality, and advanced scientific projects-such as

undersea exploration and planetary rovers.

10

6

Multiprocessor systems

Advantages :

 Increased throughput: By increasing the number of processors, we hope to get more work done in less

time. The speed-up ratio with N processors is not N; rather, it is less than N. When multiple processors

cooperate on a task, a certain amount of overhead is incurred in keeping all the parts working correctly.

This overhead, plus conflict for shared resources, lowers the expected gain from additional processors.

 Economy of scale: Multiprocessor systems can save more money than multiple single-processor systems,

because they can share peripherals, mass storage, and power supplies. If several programs operate on the

same set of data, it is cheaper to store those data on one disk and to have all the processors share them, than

to have many computers with local disks and many copies of the data.

 Increased reliability: If functions can be distributed properly among several processors, then the failure

of one processor will not halt the system, only slows down. If we have ten processors and one fails, then

each of the remaining nine processors must take a share of the work of the failed processor. Thus, the entire

system runs only 10 percent slower, rather than failing altogether. This ability to continue providing service

proportional to the level of surviving hardware is called graceful degradation. Systems designed for

graceful degradation are also called fault tolerant.

The most common multiple-processor systems now use symmetric multiprocessing (SMP), in which each

processor runs an identical copy of the OS, and these copies communicate with one another as needed.

Some systems use asymmetric multiprocessing, in which each processor is assigned a specific task. A

master processor controls the system; the other processors either look to the master for instruction or have

predefined tasks. This scheme defines a master-slave relationship. The master processor schedules and

allocates work to the slave processors. SMP means that all processors are peers; no master-slave

relationship exists between processors. Each processor concurrently runs a copy of the operating system.

The difference between symmetric and asymmetric multiprocessing may be the result of either hardware or

software. Special hardware can differentiate the multiple processors, or the software can be written to allow

only one master and multiple slaves. For instance, Sun's operating system SunOS Version 4 provides

asymm Clustered System

CLUSTERED SYSTEM

Asymmetric mode

• one machine is in hot standby mode while the other is running the applications.

• The hot standby host (machine) just monitors the active server.

• If that server fails, the hot standby host becomes the active server.

7

Symmetric mode

• two or more hosts are running applications, and they are monitoring each other. This mode is

obviously more efficient, as it uses all of the available hardware

5 (a) Define system call. Classify the types of systems calls.

System calls provide the interface between a process and OS. These calls are normally assembly-language

instructions and used by the assembly-language programmers. Some systems allow system calls to be made

directly from a higher level language program. In such cases, the calls resemble predefined function or

subroutine calls. They may generate a call to a special run-time routine that makes the system call or the

system call may be generated directly in-line.

System calls can be grouped roughly into five major categories: process control, file management, device

management, information maintenance, and communications. These are discussed in the following sections.

Table 2.1 summarizes the types of system calls provided by OS.

05

 (b) How does system call work? Explain with neat diagram.

To understand how system calls are used, consider an example of writing a program to read data from one

file and to copy them to another file. The program needs names of two files as an input. These names may

be asked from the user. Now, this will initiate a sequence of system calls: to write a prompting message on

05

8

the screen, and to read the characters from keyboard which defines names of files. Then, the program opens

an input file and creates the output file. This operation requires another system call that may possibly face

error conditions. Each of the error conditions (like input file doesn’t exist, no permission to read, output file

can’t be created, no write permission etc) require different system calls. When everything is proper, we

enter a loop to read from input file and write into the output file. Both of these operations are system calls.

Every read/write must return status information for any possible error or end-of-file. Again, this requires

system call.

Once the task is done, both the files must be closed using system calls. Finally, the program will be

terminated using final system call. Thus, we can make out that a very simple program also uses OS heavily.

However, the users never see such details. Because, the set of built-in functions provided by the compiler of

programming languages provides very simpler interface.

Occurrence of system calls differ from computer to computer. Apart from the identity of the system call,

some more information may also be required. The type and nature of information vary according to OS and

call. For example, to get input, we may need to specify the file or device to use as the source, and the

address and length of the memory buffer into which the input should be read.

Three general methods are used to pass parameters to the operating system:

 The simplest approach is to pass the parameters in registers.

 In some cases, there may be more parameters than registers. Then, the parameters are stored in a block or

table in memory. And the address of the block is passed as a parameter in a register as shown in Figure 2.1.

This is the approach taken by Linux. Parameters can also be placed, or pushed, onto the stack by the

program, and popped of the stack by the operating system.

 Some OS prefer the block or stack methods, because those approaches do not limit the number or length

of parameters being passed. System calls can be grouped roughly into five major categories: process

control, file management, device management, information maintenance, and communications. These

are discussed in the following sections. Table 2.1 summarizes the types of system calls provided by OS.

9

6 (a) Explain in detail about virtual machines

• A virtual machine takes the layered approach to its logical conclusion.

• It treats hardware and the operating system kernel as though they were all hardware.

• A virtual machine provides an interface identical to the underlying bare hardware.

• The operating system creates the illusion of multiple processes, each executing on its own processor

with its own (virtual) memory.

• The resources of the physical computer are shared to create the virtual machines. That is,

– CPU scheduling can create the appearance that users have their own processor.

– Spooling and a file system can provide virtual card readers and virtual line printers.

– A normal user time-sharing terminal serves as the virtual machine operator’s console.

• Machine has two modes :

1.User Mode

2. Monitor mode

• VM Software run in monitor mode, since it is the OS

• VM itself can execute in only user mode.

• Both run in a physical user mode

• In real machine – transfer from user mode to monitor mode

• Virtual machine – transfer from virtual user mode to virtual monitor mode

• Though the virtual-machine (VM) concept is useful, it is difficult to implement due to the effort

required to provide an exact duplicate of the underlying machine.

• Compared to actual I/O, the virtual I/O may take considerably more time, as it is interpreted.

• Also, since CPU is multiprogrammed among many virtual machines, the VM will slow down

unpredictably.

10

10

Benefits

• The virtual-machine concept provides complete protection of system resources since each virtual

machine is isolated from all other virtual machines.

• This isolation, however, permits no direct sharing of resources.

• A virtual-machine system is a perfect means for operating systems research and development.

• System development is done on the virtual machine, instead of on a physical machine and so does

not disrupt normal system operation.

7 Explain any two I/O communication techniques with flowchart

1.7.1 Programmed I/O

When the processor is executing a program and encounters an I/O instruction, then it will

inform I/O module and executes that instruction. In case of programmed I/O, the I/O

module performs the task but do not interrupt the processor about the completion of the

task. Hence, the processor must periodically keep checking the I/O module for the

completion of the task.

Thus, the processor is responsible for extracting/storing data from/to the main memory. So,

the instruction set includes the I/O instructions in the following categories:

 Control: activates an external device and informs the action to be taken.

 Status: used to test various status conditions associated with I/O module.

 Transfer: to read/write data between processor registers and external devices.

Note that, the technique of programmed I/O is time-consuming and keeps the processor

busy unnecessarily.

Explain Interrupt-driven I/O communication technique with a flowchart.

The programmed I/O technique will degrade the performance of the processor. An alternative way is to

provide interrupt-driven I/O. In this technique, the processor will issue an I/O command to the I/O module

and then continue its regular instruction execution. When the I/O module is ready, it will interrupt the

processor. Then the processor will execute the requested task and then resume its former processing.

Interrupt-Driven I/O

10

11

As it is observed, the programmed I/O technique will degrade the performance of the processor. An

alternative way is to provide interrupt-driven I/O. In this technique, the processor will issue an I/O

command to the I/O module and then continue its regular instruction execution. When the I/O module is

ready, it will interrupt the processor. Then the processor will execute the requested task and then resume its

former processing.

8 (a) Summarize MS DOS layer structure with a neat diagram.

In the layered approach, the OS is divided into a number of layers (levels), each built on top

of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the

user interface.

The main advantage of layered approach is modularity. The layers are selected such that each uses

functions (operations) and services of only lower-level layers. This approach

simplifies debugging and system verification.

05

 (b) Write a short note on microkernel

• All non-essential components of earlier UNIX kernel have been removed and only system and

user level programs have been implemented. Hence, it became a smaller kernel.

• Microkernels provide minimal process and memory management, in addition to a communication

facility.

• Communication takes place between user modules using message passing.

• The major benefits of using microkernels

– easier to extend a microkernel

05

12

– easier to port the operating system to new architectures

– more reliable (less code is running in kernel mode)

– more secure and reliable (services are running as user rather than kernel-processes)

• Tru64 UNIX – UNIX interface, implementation-Mach kernel

• QNX – realtime os based on microkernel

• Windows NT uses a hybrid structure (layering)

• Designed to run various applications, including win32, OS/2, and POSIX

9 (a) What is memory hierarchy? List and explain the category with neat diagram

To solve this problem, memory hierarchy has to be used instead of relying on a single

memory component. A typical memory hierarchy would be as given in Figure 1.9. In this

hierarchy, from top to bottom, the following occur:

(i) Decreasing cost per bit

(ii) Increasing capacity

(iii) Increasing access time

(iv) Decreasing frequency of access to the memory by the processor Hence, the smaller, expensive, faster

memories are supplemented by larger, cheaper, slower memories. The levels of memory hierarchy are

explained hereunder.

 Registers: Generally every processor contains a few dozen or hundreds of registers which are faster,

smaller but expensive.

 Cache Memory: It is not usually visible to the programmer, but visible only to the processor. It is used

for the movement of data between main memory and processor registers.

 Main Memory: It is the principal internal memory system of the computer. Each location in the main

memory has a unique address. Most of the machine instructions refer to one or more main memory

addresses. Main memory is usually extended with a higher speed, smaller cache.

 Secondary/Auxiliary Memory: The next two levels of the hierarchy falls into this category. The data are

stored permanently on external storage devices like hard disk,

06

 (b) Write a short note on cache memory

1.6 CACHE MEMORY

Since cache memory plays very important role in the performance of the processor and managing the

memory hardware, it is being discussed in detail here.

04

13

On every instruction cycle, the processor fetches the memory at least once. If the instruction contains

operands or it needs to store some data, then every fetch may need to access memory more than once. Thus,

the processor speed is always restricted by the memory cycle time. And, in almost all computers, the

processor speed is much higher than that of memory cycle speed. Hence, an intermediate repository of

instructions is thought of to keep a portion of memory that needs to be executed by the processor. Such a

small and fast memory between the processor and main memory is called as cache.

Cache Design

The design of a cache memory has to consider following aspects:

 Cache size: Small size caches have significant impact on the performance of the processor.

 Block size: It indicates the amount of data exchanged between cache and main memory. Optimum

selection of this size is essential. Because, if the block size is too small, then it cannot hold many

instructions and hence the main memory has to be hit more number of times. Whereas, if the block size is

too large, then it becomes almost like a main memory and the very usage of cache will be void.

 Mapping function: This function determines the location in the cache to be occupied by the block. It has

two constraints: (i) while one block is read, another may need to be replaced. (ii) As mapping function

becomes more flexible, the design circuitry becomes complex.

 Replacement algorithm: This algorithm decides which block has to be replaced when a new block is

loaded into the cache. And the design of this algorithm should work within the constraints of mapping

function. In most of the cases, least-recently used (LRU) method is applied.

 Write policy: If the contents of the block in the cache are modified, the same has to be written inside the

main memory. The write policy indicates when the memory write operation has to take place.

10. Explain the basic elements of computer system

A computer consists of processor, memory and I/O components with one or more modules of each type.

These components are interconnected to ease job of computer. Thus, there are four structural elements:

 Processor: It controls the operation of the computer and performs its data processing functions. When

there is only one processor, it is called as Central Processing Unit (CPU).

 Main Memory: It stores data and programs. But, the contents of memory are lost when the computer

shuts down. Whereas, the contents of disk memory are retained.

 I/O Modules: Move data between the computer and its external environment. The external environment

consists of a variety of devices including secondary memory devices, communications equipment and

terminals.

 System Bus: This provides communication among processors, main memory and I/O modules.

10

14

The top-level components of computer are shown in Figure 1.1. One of the functionality of a processor is to

exchange data with memory. For this purpose, the following registers are used:

 Memory Address Register (MAR): specifies the address in memory for the next read or write.

 Memory Buffer Register (MBR): contains data to be written into memory or it receives the data read

from memory.

 I/O Address Register (I/OAR): indicates particular I/O device

 I/O Buffer Register: used to exchange data between an I/O module and the processor.

A memory module contains a set of locations – which are sequentially numbered addresses. Each location

contains a bit pattern that can be interpreted as an instruction or data. An I/O module transfers data from

external devices to processor and memory and vice versa. It contains temporary buffers for holding data till

they are sent.

