
1 | P a g e

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - I

Sub: Advanced Java Programming Code: 17MCA41

Date: 05-03-2019 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Answer Any One FULL Question from each part.

Ma

rks

OBE

CO RBT

Part - I

1 Define Servlet. Explain the basic servlet structure and its life cycle methods 10 CO1 L1

2 List and explain the different HTTP 1.1 request headers and its methods 10 CO1 L2

Part – II

3 Write JSP program to read data from a HTML form (gender data from radio buttons and
colours data from check boxes) and display

10 CO1 L3

4 (a) Narrate the major range of http status codes along with their purpose 05 CO1 L2

 (b) Write a short note on getAttribute() and setAttribute() 05 CO1 L2

5 Explain different types of session tracking techniques with example 10 CO1 L2

6 (a) Write the differences between JSP and servlets. 05 CO2 L2

(b) What are the need, benefit and advantages of JSP 05 CO2 L1

Part – IV

7 Write a servlet program using cookies to remember user preferences.

10 CO1 L3

8 Explain the following action tags with a code snippet.
i)<jsp:forward>
ii)<jsp:plugin>

10 CO2 L3

Part – V

9 (a) Explain any five attributes of page directive with an example. 05 CO2 L2

 (b) Compare <jsp:include> action tag with include directive 05 CO2 L3

10 Explain the different types of JSP tags with an example. 10 CO2 L1

2 | P a g e

Internal Assesment Test – I

Advanced Java Programming – Answer Key

Date: 05.03.2019 Code: 17MCA41

1. Define Servlet. Explain the basic servlet structure and its life cycle methods

Java Servlets are programs that run on a Web or Application server

 client and

databases or applications on the HTTP server.

 from a

database or another source, and create web pages dynamically.

 web

applications.

 A servlet life cycle can be defined as the entire process from its creation till the destruction. The

Following are the paths followed by a servlet

servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :

 is first created, and not called again for each user request. So, it is used for

one-time initializations, just as with the init method of applets.

 but you

can also specify that the servlet be loaded when the server is first started.

 the servlet.

The init method definition looks like this:

public void init() throws ServletException {

// Initialization code...

}

The service() method :

3 | P a g e

from the client(browsers) and to write the formatted response back to the client.

The service() method checks the HTTP request type (GET, POST, PUT, DELETE,

etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Signature of service method:

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException

{

}

and service method invokes doGe, doPost,

doPut, doDelete, etc.methods as appropriate.

depending on what type of request you receive from the client.

) and doPost() are most frequently used methods with in each service request.

Here is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and it

should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

// Servlet code

}

The destroy() method :

ly once at the end of the life cycle of a servlet.

threads, write cookie lists or hit counts to disk, and perform other such cleanup activities.

method is called, the servlet object is marked for garbage collection.

The destroy method definition looks like this:

public void destroy() {

// Finalization code...

}

2. List and explain the different HTTP 1.1 request headers and its methods

4 | P a g e

When a browser requests for a web page, it sends lot of information to the web server which can not

be read directly because this information travel as a part of header of HTTP request. You can check HTTP

Protocol for more information on this.

Header Description

Accept This header specifies the MIME types that the browser or other clients

 can handle. Values of image/png orimage/jpeg are the two most

 common possibilities.

Accept-Charset This header specifies the character sets the browser can use to display

 the information. For example ISO-8859-1.

Accept-Encoding This header specifies the types of encodings that the browser knows

 how to handle. Values of gzip orcompress are the two most common

 possibilities.

Accept-Language This header specifies the client's preferred languages in case the servlet

 can produce results in more than one language. For example en, en-us,

 ru, etc.

Authorization This header is used by clients to identify themselves when accessing

 password-protected Web pages.

Connection This header indicates whether the client can handle persistent HTTP

 connections. Persistent connections permit the client or other browser

 to retrieve multiple files with a single request. A value of Keep-

 Alive means that persistent connections should be used

Content-Length This header is applicable only to POST requests and gives the size of

 the POST data in bytes.

Cookie This header returns cookies to servers that previously sent them to the

 browser.

Host This header specifies the host and port as given in the original URL.

If-Modified-Since This header indicates that the client wants the page only if it has been

 changed after the specified date. The server sends a code, 304 which

 means Not Modifiedheader if no newer result is available.

If-Unmodified- This header is the reverse of If-Modified-Since; it specifies that the

Since operation should succeed only if the document is older than the

5 | P a g e

 specified date.

Referer This header indicates the URL of the referring Web page. For example,

 if you are at Web page 1 and click on a link to Web page 2, the URL of

 Web page 1 is included in the Referer header when the browser

 requests Web page 2.

User-Agent This header identifies the browser or other client making the request

 and can be used to return different content to different types of

 browsers.

List the methods to Read the request Headers

Reading headers is straightforward; just call the getHeader method of HttpServletRequest, which

returns a String if the specified header was supplied on this request, null otherwise. Header names are

not case sensitive. So, for example, request.getHeader("Connection") and

Request.getHeader("connection") are interchangeable.

 Although getHeader is the general-purpose way to read incoming headers, there are a couple of

headers that are so commonly used that they have special access methods in HttpServletRequest.

getCookies : The getCookies method returns the contents of the Cookie header, parsed and stored in

an array of Cookie objects. This method is discussed more in Chapter 8 (Handling Cookies).

getAuthType and getRemoteUser : The getAuthType and getRemoteUser methods break the

Authorization header into its component pieces.

getContentLength The getContentLength method returns the value of the Content-Length header (Int)

getContentType The getContentType method returns the value of the Content-Type header (as a String).

getDateHeader and getIntHeader The getDateHeader and getIntHeader methods read the specified

header and then convert them to Date and int values, respectively.

getHeaderNames Rather than looking up one particular header, you can use the getHeaderNames

method to get an Enumeration of all header names received on this particular request.

getHeaders In most cases, each header name appears only once in the request. Occasionally, however, a

header can appear multiple times, with each occurrence listing a separate value. Accept-Language is one

such example.

getMethod The getMethod method returns the main request method (normally GET or POST, but things

like HEAD, PUT, and DELETE are possible).

getRequestURI The getRequestURI method returns the part of the URL that comes after the host and

port but before the form data. For example, for a URL of

6 | P a g e

http://randomhost.com/servlet/search.BookSearch, getRequestURI would return

/servlet/search.BookSearch.

getProtocol Lastly, the getProtocol method returns the third part of the request line, which is generally

HTTP/1.0 or HTTP/1.1. Servlets should usually check getProtocol before specifying response headers

(Chapter 7) that are specific to HTTP 1.1.

3. Write JSP program to read data from a HTML form (gender data from radio buttons and colours data

from check boxes) and display

<%@ page contentType="text/html; charset=iso-8859-1" language="java" %>

<html>

<body>

<form name="frm" method="get" action="radioInput.jsp">

<table width="100%" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td width="22%"> </td>

 <td width="78%"> </td>

 </tr>

 <tr>

 <td>Male<input type="radio" name="gender" value="Male"></td>

 <td>Female <input type="radio" name="gender" value="Female"></td>

 </tr>

 <tr>

 <td>RED <input type="checkbox" name="colour" value="red"></td>

 <td>GREEN <input type="checkbox" name="colour" value="green"></td>

 <td>BLUE <input type="checkbox" name="colour" value="blue"></td>

 </tr>

 <tr>

 <tr>

 <td> </td>

 <td><input type="submit" name="submit" value="Submit"></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

</table>

</form>

</body>

7 | P a g e

</html>

radioInput.jsp

<%@ page contentType="text/html; charset=iso-8859-1" language="java" %>

<%

String radioInJSP=request.getParameter("gender");

%>

%>

<html>

<body>

Value of radio button box in JSP : <%=radioInJSP%>

<%

String colours[]= request.getParameterValues("colour");

if(colours != null)

{

%>

<h4>I likes colour/s mostly</h4>

<%

for(int i=0; i<colours.length; i++)

{

%>

<%=colours[i]%>

<%

}

%>

</body>

</html>

4.a) Narrate the major range of http status codes along with their purpose

The status line consists of the
 HTTP version (HTTP/1.1 in the example above),

 a status code (an integer; 200 in the above example),

 a very short message corresponding to the status code (OK in the example).

8 | P a g e

200 (OK) – Everything is fine; document follows. – Default for servlets.
204 (No Content) - – Browser should keep displaying previous document.
301 (Moved Permanently)
– Requested document permanently moved elsewhere (indicated in Location header).

– Browsers go to new location automatically.
401 (Unauthorized)
– Browser tried to access password-protected page without proper Authorization header.

404 (Not Found)
– No such page. Servlets should use sendError to set this.
– Problem: Internet Explorer and small (< 512 bytes) error pages. IE ignores small error page by
default.

4.b) Write a short note on getAttribute() and setAttribute()

a) getAttribute() is the method of HTTPSession which Returns the String
object specified in the parameter, from the session object. If no object is found
for the specified attribute, then the getAttribute() method returns null.

public Object getAttribute(String name):

TO get the value from session we use the getAttribute() method of HttpSession
interface. Here we are fetching the attribute values using attribute names.

String userName = (String) session.getAttribute("uName");
String userEmailId = (String) session.getAttribute("uemailId");
String userAge = (String) session.getAttribute("uAge");

b) setAttribute() is the method of HTTPSession which binds the object with a
name and stores the name/value pair as an attribute of the HttpSession
object. If an attribute already exists, then this method replaces the existing
attributes.

9 | P a g e

public void setAttribute(String name, Object value)

example

session.setAttribute("uName", "ChaitanyaSingh");
session.setAttribute("uemailId", "myemailid@gmail.com");
session.setAttribute("uAge", "30");

This First parameter is the attribute name and second is the attribute value. For
e.g. uName is the attribute name and ChaitanyaSingh is the attribute value in the
code above.

5.Explain different types of session tracking techniques with example

Session tracking is the capability of a server to maintain the current state of a single
client’s sequential requests.

Session simply means a particular interval of time.

Session Tracking is a way to maintain state of a user.

The HTTP protocol used by Web servers is stateless.

Each time user requests to the server, server treats the request as the new request.

So we need to maintain the state of a user to recognize to particular user.

This type of stateless transaction is not a problem unless you need to know the sequence of
actions a client has performed while at your site.

For example, an online video store must be able to determine each visitor’s sequence of
actions.

Session Tracking Techniques

There are four techniques used in Session tracking:

Cookies

Hidden Form Field

URL Rewriting

HttpSession

1. Cookies

A cookie is a small piece of information that is persisted between the multiple client
requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and
domain qualifiers, a maximum age, and a version number.

10 | P a g e

javax.servlet.http.Cookie class provides the functionality of using cookies.

Constructor of Cookie class
Cookie(String name, String value): Constructs a cookie with a specified name and value.

Commonly used methods of Cookie class

There are given some commonly used methods of the Cookie class.

1. public void setMaxAge(int expiry): Sets the maximum age of the cookie in seconds.
2. public String getName(): Returns the name of the cookie. The name cannot be changed
after creation.
3. public String getValue(): Returns the value of the cookie.

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods
provided by other interfaces. They are:

1. public void addCookie(Cookie ck): method of HttpServletResponse interface is used to
add cookie in response object.
2. public Cookie[] getCookies(): method of HttpServletRequest interface is used to return
all the cookies from the browser.

Advantage of Cookies:

1. Identifying a User During an E-commerce Session

2. Avoiding Username and Password

3. Customizing a Site

4. Focusing Advertising

5. Simplest technique of maintaining the state.
6. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.
2. Only textual information can be set in Cookie object.

11 | P a g e

2) Hidden Form Field

A hidden (invisible) textfield is used for maintaining the state of an user.

In such case, we store the information in the hidden field and get it from another servlet.

This approach is better if we have to submit form in all the pages and we don't want to
depend on the browser.

Let's see the code to store value in hidden field.

1. <input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page id or page

name in the hidden field so that each page can be uniquely identified.

Advantage of Hidden Form Field

1. It will always work whether cookie is disabled or not.

Disadvantage of Hidden Form Field:

1. It is maintained at server side.

2. Extra form submission is required on each pages.

3. Only textual information can be used.

3.URL Rewriting

The client appends some extra data on the end of each URL that identifies the session, and the server

associates that identifier with data it has stored about that session.

For example, with

http://host/path/file.html;jsessionid=1234, the session information is attached as

jsessionid=1234.

url?name1=value1&name2=value2&??

This is also an excellent solution, and even has the advantage that it works when browsers don’t support

cookies or when the user has disabled them.

Advantage of URL Rewriting

1. It will always work whether cookie is disabled or not (browser independent).

2. Extra form submission is not required on each pages.

12 | P a g e

Disadvantage of URL Rewriting

1. It will work only with links.

2. It can send Only textual information.

4) HTTP Session

In HTTP Session, container creates a session id for each user.The container uses this id to
identify the particular user.An object of HttpSession can be used to perform two tasks:

1. bind objects

2. view and manipulate information about a session, such as the session identifier, creation

time, and last accessed time.

How to get the HttpSession object ?

The HttpServletRequest interface provides two methods to get the object of HttpSession:

1. public HttpSession getSession():Returns the current session associated with this

request, or if the request does not have a session, creates one.

2. public HttpSession getSession(boolean create):Returns the current HttpSession

associated with this request or, if there is no current session and create is true, returns a

new session.

Commonly used methods of HttpSession interface

1. public String getId():Returns a string containing the unique identifier value.

2. public long getCreationTime():Returns the time when this session was created,

measured in milliseconds since midnight January 1, 1970 GMT.

3. public long getLastAccessedTime():Returns the last time the client sent a request

associated with this session, as the number of milliseconds since midnight January 1,

1970 GMT.

4. public void invalidate():Invalidates this session then unbinds any objects bound to it.

6.a) Write the differences between JSP and servlets.

JSP Servlets

JSP is a webpage scripting language that can

generate dynamic content.

Servlets are Java programs that are already

compiled which also creates dynamic web

content.

JSP run slower compared to Servlet as it takes

compilation time to convert into Java Servlets.

Servlets run faster compared to JSP.

http://www.withoutbook.com/Technology.php?tech=2&subject=JSP%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/Technology.php?tech=3&subject=Servlets%20Interview%20Questions%20and%20Answers

13 | P a g e

It’s easier to code in JSP than in Java Servlets. Its little much code to write here.

In MVC, jsp act as a view. In MVC, servlet act as a controller.

JSP are generally preferred when there is not

much processing of data required.

servlets are best for use when there is more

processing and manipulation involved.

The advantage of JSP programming over

servlets is that we can build custom tags which

can directly call Java beans.

There is no such custom tag facility in servlets.

We can achieve functionality of JSP at client

side by running JavaScript at client side.

There are no such methods for servlets.

6.b) What are the need, benefit and advantages of JSP

Need:

• It is hard to write and maintain the HTML. Using print statements to generate HTML?

Hardly convenient: you have to use parentheses and semicolons, have to insert backslashes in

front of embedded double quotes, and have to use string concatenation to put the content

together. Besides, it simply does not look like HTML, so it is harder to visualize. Compare this

servlet style with Listing 10.1 where you hardly even notice that the page is not an ordinary

HTML document.

• You cannot use standard HTML tools. All those great Web-site development tools you have

are of little use when you are writing Java code.

• The HTML is inaccessible to non-Java developers. If the HTML is embedded within Java

code, a Web development expert who does not know the Java programming language will have

trouble reviewing and changing the HTML.

Benefits:

JSP provides the following benefits over servlets alone:

 • It is easier to write and maintain the HTML. Your static code is ordinary HTML: no extra

backslashes, no double quotes, and no lurking Java syntax.

• You can use standard Web-site development tools. For example, we use Macromedia

Dreamweaver for most of the JSP pages in the book. Even HTML tools that know nothing about

JSP can be used because they simply ignore the JSP tags.

• You can divide up your development team. The Java programmers can work on the dynamic

code. The Web developers can concentrate on the presentation layer. On large projects, this

division is very important. Depending on the size of your team and the complexity of your

project, you can enforce a weaker or stronger separation between the static HTML and the

dynamic content.

 Advantages:

http://www.withoutbook.com/InterviewQuestionAnswer.php?tech=2&quesId=458&subject=JSP%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/Technology.php?tech=35&subject=Java%20Beans%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/Technology.php?tech=8&subject=JavaScript%20Interview%20Questions%20and%20Answers

14 | P a g e

Following table lists out the other advantages of using JSP over other technologies −

vs. Active Server Pages (ASP)

The advantages of JSP are twofold. First, the dynamic part is written in Java, not Visual Basic or

other MS specific language, so it is more powerful and easier to use. Second, it is portable to

other operating systems and non-Microsoft Web servers.

vs. Pure Servlets

It is more convenient to write (and to modify!) regular HTML than to have plenty of println

statements that generate the HTML.

vs. Server-Side Includes (SSI)

SSI is really only intended for simple inclusions, not for "real" programs that use form data,

make database connections, and the like.

vs. JavaScript

JavaScript can generate HTML dynamically on the client but can hardly interact with the web

server to perform complex tasks like database access and image processing etc.

vs. Static HTML

Regular HTML, of course, cannot contain dynamic information.

7.Write a servlet program using cookies to remember user preferences.

import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@WebServlet("/store")

public class store extends HttpServlet {
 protected void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out=response.getWriter();
 try
 {
 String s1=request.getParameter("color");
 if (s1.equals("RED")||s1.equals("BLUE")||s1.equals("GREEN"))
 {
 Cookie ck1=new Cookie("color",s1);
 response.addCookie(ck1);
 out.println("<html>");
 out.println("<body>");
 out.println("You selected: "+s1);
 out.println("<form action='retrieve' method='post'>");
 out.println("<input type='Submit' value='submit'/>");
 out.println("</form>");
 out.println("</body>");
 out.println("</html>");
 }

15 | P a g e

 }
 finally
 {
 out.close();
 }
 }
}

retrieve.java

package j2ee.prg4;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@WebServlet("/retrieve")
public class retrieve extends HttpServlet {
 protected void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out=response.getWriter();
 try
 {
 Cookie ck[]=request.getCookies();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>servlet</title>");
 out.println("</head>");
 out.println("<body bgcolor="+ck[0].getValue()+">");
 out.println("You selected color is: "+ck[0].getValue()+"</h1>");
 out.println("</body>");
 out.println("</html>");
 }
 finally
 {
 out.close();
 }
 }

}

Index.jsp

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">

16 | P a g e

<title>Insert title here</title>
</head>
<body>
<!-- send the form data to the url store and the post method is used -->
<form action="store" method="post">
<!-- Display the Radio button with three option -->
RED:<input type="radio" name="color" value="RED"/>

GREEN:<input type="radio" name="color" value="GREEN"/>

BLUE:<input type="radio" name="color" value="BLUE"/>

<input type="submit" value="submit"/>
</form>
</body>
</html>

8. Explain the following action tags with a code snippet.

i)<jsp:forward>

ii)<jsp:plugin>

i)<jsp:forward>

The jsp:forward action tag is used to forward the request to another resource it may be jsp,

html or another resource.

Syn:

<jsp:forward page=”name of resource” />

Ex:

<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<!-- send the form data to login.jsp and the get method is used -->

<form method="get" action="login.jsp">

UserName : <input type="text" name ="name">

Password : <input type="password" name ="pass">

<input type="Submit" value ="Submit"/>

</form>

</body>

</html>

login.jsp
<%@ page language="java" contentType="text/html; charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

17 | P a g e

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

<%

//Getting the input name from the html form and storing in String ‘uname’

String uname = request.getParameter("name");

//Getting the input pass from the html form and storing in String ‘upass’

String upass = request.getParameter("pass");

if(uname.equals("admin") && upass.equals("admin"))

{

 %>

 <jsp:forward page="main.jsp"></jsp:forward>

<%

}

%>

</body>

</html>

(ii) <jsp:plugin> Action

 plugin action is used to insert Java components into a JSP page. It determines the
type of browser and inserts the <object> or <embed> tags as needed.

component. The Java component can be either an Applet or a JavaBean.

to
format Java components.

Following is the typical syntax of using plugin action:

The simplest way to use jsp:plugin is to supply four attributes: type, code, width, and height.

<APPLET CODE="MyApplet.class“ WIDTH=475 HEIGHT=350>

</APPLET>

<jsp:plugin type="applet“ code="MyApplet.class“ width="475" height="350">

</jsp:plugin>

 Type - For applets, this attribute should have a value of applet. The Java Plug-In also

permits

18 | P a g e

embed JavaBeans elements in Web pages. Use a value of bean in such a case.

 Code - This attribute is used identically to the CODE attribute of APPLET, specifying

the toplevel

applet class file that extends Applet or JApplet.

 Width - This attribute is used identically to the WIDTH attribute of APPLET, specifying

the

width in pixels to be reserved for the applet .

 Height - This attribute is used identically to the HEIGHT attribute of APPLET,

specifying the

height in pixels to be reserved for the applet

• codebase - This attribute is used identically to the CODEBASE attribute of APPLET,

specifying the

base directory for the applets. The code attribute is interpreted relative to this directory. As with

the APPLET element, if you omit this attribute, the directory of the current page is used as the

default. In the case of JSP, this default location is the directory where the original JSP file

resided, not the system-specific location of the servlet that results from the JSP file.

9. a) Explain any five attributes of page directive with an example.

The page directive is used to provide instructions to the container that pertain to the current
JSP page. You may code page directives anywhere in your JSP page. By convention, page
directives are coded at the top of the JSP page.
Following is the basic syntax of page directive:

<%@ page attribute="value" %>

You can write XML equivalent of the above syntax as follows:

<jsp:directive.page attribute="value" />

1. The import Attribute:
The import attribute serves the same function as, and behaves like, the Java import statement.
The value for the import option is the name of the package you want to import.
To import java.sql.*, use the following page directive:

<%@ page import="java.sql.*" %>

To import multiple packages you can specify them separated by comma as follows:

<%@ page import="java.sql.*,java.util.*" %>

By default, a container automatically imports java.lang.*, javax.servlet.*, javax.servlet.jsp.*,
and javax.servlet.http.*.

19 | P a g e

Example code

2. The session Attribute:
The session attribute indicates whether or not the JSP page uses HTTP sessions. A value of true
means that the JSP page has access to a builtin session object and a value of false means that
the JSP page cannot access the builtin session object.
Following directive allows the JSP page to use any of the builtin object session methods such
as session.getCreationTime() or session.getLastAccessTime():

<%@ page session="true" %>

Example

<body>

<%@ page session="true" %>
 <% // a scriptlet
 String empName = request.getParameter("nameField"); // reading from client
 String empSalary = request.getParameter("salaryField");

 session.setAttribute("en", empName); // setting with session object
 session.setAttribute("es", empSalary);
 // just a message
 out.println("Employee values are set with session object.
");
 out.println("Can be accessed from a different program.");
 %>

</body>

3. The buffer Attribute:
The buffer attribute specifies buffering characteristics for the server output response object.
You may code a value of "none" to specify no buffering so that all servlet output is
immediately directed to the response object or you may code a maximum buffer size in
kilobytes, which directs the servlet to write to the buffer before writing to the response object.
To direct the servlet to write output directly to the response output object, use the following:

<%@ page buffer="none" %>

Use the following to direct the servlet to write output to a buffer of size not less than 8
kilobytes:

<%@ page buffer="8kb" %>

20 | P a g e

4. The autoFlush Attribute:
The autoFlush attribute specifies whether buffered output should be flushed automatically
when the buffer is filled, or whether an exception should be raised to indicate buffer overflow.
A value of true (default) indicates automatic buffer flushing and a value of false throws an
exception.
The following directive causes the servlet to throw an exception when the servlet's output
buffer is full:

<%@ page autoFlush="false" %>

This directive causes the servlet to flush the output buffer when full:

<%@ page autoFlush="true" %>

Usually, the buffer and autoFlush attributes are coded on a single page directive as follows:

<%@ page buffer="16kb" autoflush="true" %>

5. The contentType Attribute:
The contentType attribute sets the character encoding for the JSP page and for the generated
response page. The default content type is text/html, which is the standard content type for
HTML pages.
If you want to write out XML from your JSP, use the following page directive:

<%@ page contentType="text/xml" %>

The following statement directs the browser to render the generated page as HTML:

<%@ page contentType="text/html" %>

The following directive sets the content type as a Microsoft Word document:

<%@ page contentType="application/msword" %>

9. b) Compare <jsp:include> action tag with include directive

21 | P a g e

10. Explain the different types of JSP tags with an example.

1) Scriptlet Tag (<% … %>)

that are valid in the page scripting language.

 time the JSP page is processed.

Syntax two forms:
• <% any java code %>

• <jsp:scriptlet> ... </jsp:scriptlet>. (XML form)

• Example

 <% if (Math.random() < 0.5)

{

%>

 Have a nice day!

<%

}

Else

{ %>

Have a lousy day!

<%

 }

%>

• Representative result

– if (Math.random() < 0.5) {

out.println("Have a nice day!");

} else {

out.println("Have a lousy day!");

}

2) Expression Tag: (<%= … %>)

22 | P a g e

inserted where the expression appears in the JSP file.

on within a line of text,

whether or not it is tagged with HTML, in a JSP file.

you cannot use a semicolon to end an expression.

Syntax two forms:
• <%= expr %>

• <jsp:expression> expr </jsp:expression> (XML form)

3) Declaration Tag (<%! … %>)

 declaration declares one or more variables or methods that you can use in Java code later in the JSP file. You

must declare the variable or method before you use it in the JSP file.

 method.

o May declare instance variables.

o May declare (private) member functions.

Syntax two forms:
• <%! declaration %>

• <jsp:declaration> declaration(s)</jsp:declaration>

Example for declaration of Instance Variable:
<html>

<body>

<%! private int accessCount = 0; %>
<p> Accesses to page since server reboot:

<%= ++accessCount %> </p>
</body>

</html>

4) Directive Tag (<%@ … %>)

Directive tag commands the JSP virtual engine to perform a specific task, such as importing a Java package

required by objects and methods.

Directive Description
<%@ page ... %> Defines page-dependent attributes, such as scripting

language, error page, and buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used

in the page

23 | P a g e

5) JSP Action

• Description:

Action that takes place when the page is requested

• Example:

<jsp:blah>...</jsp:blah>

6) JSP Expression Language Element

• Description:

Shorthand JSP expression

• Example:

${ EL Expression }

7) Custom Tag (Custom Action)

• Description:

Invocation of custom tag

• Example:

<prefix:name>

Body

</prefix:name>

8)HTML Text

– <H1>Blah</H1>

– Passed through to client. Really turned into servlet code

that looks like

 out.print("<H1>Blah</H1>");

9) HTML Comments

– <!-- Comment -->

– Same as other HTML: passed through to client

10) JSP Comments

– <%-- Comment --%>

– Not sent to client

