
1

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – II

Sub: Operating Systems Code: 18MCA25

Date: 15.05.2019 Duration: 90 mins Max Marks: 50 Sem: II Branch: MCA

Answer Any FIVE FULL Questions

Part-1 Marks
OBE

CO RBT

1 Explain file allocation methods [10] CO4 L1

 (OR)

2(a) What is Critical Section? [2] CO2 L1

 (b) Explain reader’s writer’s problem and write the solution using semaphore. [8] CO2 L2

 Part-2

3 Explain Demand paging in detail [10] CO3 L2

 (OR)

4 Explain the segmentation memory management. Describe the hardware support this

is required for its implementation.

[10] CO3 L2

5 (a)

Part-3

What are the different file access methods? Explain briefly.

[5] CO4 L2

(b) Discuss directory implementation using

(i) Linear list

(ii) Hash table

[5] CO4 L1

 (OR)

2

6 Explain Bankers algorithm in detail. [10]

CO3 L2

 Part-4

7 State the dining philosophers’ problem and give solution for the same, using

semaphores.

[10] CO3 L3

 (OR)

8 (a) Explain

i)Fragmentation

ii) Thrashing

[5] CO3 L2

(b) Explain Linked List and grouping with respect to free space management.

Part-5
[5] CO4 L2

9(a)

 (b)

Explain various file operations

Mention the different page table structures. Explain in brief

(OR)

[5]

[5]

CO4

CO4

L1

L2

10(a) What is deadlock? Explain with a small diagram. What are the conditions occurring

when deadlock arises? 2+8

 [5] CO3 L1

 (b) Explain how resource allocation graph is used to describe deadlocks. [5] CO3 L2

3

Internal Assessment Test 2 – May 2019

Sub: Operating Systems Code: 18MCA25

Date: 15/05/2019 Duration: 90mins

Max

Marks: 50
Sem: II Branch: MCA

Note: Answer Any One FULL Question from each part.

1. Explain file allocation methods

The direct-access nature of disks allows us flexibility in the implementation of files. In almost every case, many

files will be stored on the same disk. The main problem is how to allocate space to these files so that disk space is

utilized effectively and files can be accessed quickly. Three major methods of allocating disk space are:

contiguous, linked, and indexed.

Contiguous Allocation

 In contiguous allocation, files are assigned to contiguous areas of secondary storage. A user specifies in advance

the size of the area needed to hold a file to be created. If the desired amount of contiguous space is not available, the

file cannot be created. A contiguous allocation of disk space is shown in Figure 7.11.

One advantage of contiguous allocation is that all successive records of a file are normally physically adjacent to

each other. This increases the accessing speed of records. It means that if records are scattered through the disk it

is accessing will be slower. For sequential access the file system remembers the disk address of the last block and

when necessary reads the next block. For direct access to block B of a file that starts at location L, we can

immediately access block L+B. Thus contiguous allocation supports both sequential and direct accessing. The

disadvantage of contiguous allocation algorithm is, it suffers from external fragmentation. As files are allocated

and deleted, the free disk space is broken into little pieces. Depending on the total amount of disk storage and the

average file size, external fragmentation may be a minor or a major problem.

Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a linked list of

disk blocks; the disk blocks may be scattered anywhere on the disk. The directory contains a pointer to the first

and last blocks of the file as shown in Figure 7.12.

2.

4

Linked allocation solves the problem of external fragmentation, which was present in contiguous allocation. But, still

it has a disadvantage: Though it can be effectively used for sequential-access files, to find ith file, we need to start

from the first location. That is, random-access is not possible.

Indexed Allocation

This method allows direct access of files and hence solves the problem faced in linked allocation. Each file has its

own index block, which is an array of disk-block addresses. The ith entry in the index block points to the ith block of

the file. The directory contains the address of the index block as shown in Figure 7.13.

2a) What is Critical Section?

If n processes are competing to use some shared data. Each process has a code segment, called critical section, in which

the shared data is accessed e.g. changing common variables, updating a table, writing a file etc.

It is necessary to ensure that when one process is executing in its critical

section, no other process is allowed to execute in its critical section.

2.b) Explain reader’s writer’s problem and write the solution using semaphore.

5

• Any number of readers may simultaneously read the file

• Only one writer at a time may write to the file

• If a writer is writing to the file, no reader may read it

• If there is at least one reader reading the data area, no writer may write to it.

• Readers only read and writers only write

Reader’s have priority

Unless a writer has permission to access the object, any reader requesting access to the object will get it. Note this may

result in a writer waiting indefinitely to access the object.

Writers Have Priority

When a writer wishes to access the object, only readers which have already obtained permission to access the object

are allowed to complete their access; any readers that request access after the

writer has done so must wait until the writer is done. Note this may result in readers waiting indefinitely to access the

object

The following semaphores and variables are added:

– A semaphore rsem that inhibits all readers while there is at least one writer desiring access to the data

area

– A variable writecount that controls the setting of rsem

– A semaphore y that controls the updating of writecount

6

– A semaphore z that prevents a long queue of readers to build up on rsem

3. What is demand paging? Explain how TLB improves the performance of demand paging with neat diagram.

Demand paging is similar to paging system with swapping. Whenever process needs to be executed, only the required

pages are swapped into memory. This is called as lazy swapping. As, the term swapper has a different meaning of

‘swapping entire process into memory’, another term pager is used in the discussion of demand paging.

When a process is to be swapped in, the pager guesses which pages will be used before the process is swapped out again.

The pager brings only those necessary pages into memory. Hence, it decreases the swap time and the amount of physical

memory needed.

7

Demand Paging: Bring a page into memory only when it is needed.

-Less I/O needed

-Less memory needed

-Faster response

-More users

8

4. Explain the segmentation memory management. Describe the hardware support this is required for its

implementation

Segmentation is a memory-management scheme that supports user view of memory. A logical-address space is a

collection of segments. Each address is specified in terms of the segment number and the offset within the segment.

Here, a two dimensional user-defined addresses are mapped into one-dimensional physical addresses. This mapping is

affected by a segment table. Each entry of the segment table has

 segment base – contains the starting physical address where the segment resides in memory

 segment limit – specifies the length of the segment

A logical address consists of two parts: a segment number, s and an offset d. The segment number is used as an index into

the segment table. The offset d of the logical address must be between 0 and the segment limit. If it is not, we trap to the

OS (logical addressing attempt beyond end of segment). If this offset is legal, it is added to the segment base to produce

the address in physical memory of the desired byte. The segment table is thus essentially an array of base-limit register

pairs. The structure is as given in Figure 6.14.

Fig 1 Segmentation Hardware

Example: Consider the situation shown in Figure 6.15. We have five segments numbered from 0 through 4. The segment

table has a separate entry for each segment. It is giving the beginning address of the segment in physical memory (or base)

and the length of that segment (or limit). For example, segment 2 is 400 bytes long and begins at the location 4300.

9

Fig : 2 Example of Segmentation

5. a) What are the different file access methods? Explain briefly.

There are several methods to access the information stored in the file. Some techniques are discussed here.

Sequential Access

It is the simplest method of file access. Here, information in the file are accessed one record after the other in an order. It

works on the logic: read next, write next, reset. It is shown in Figure 7.1. (Note that, in programming languages like C, the

functions like fseek(), rewind() etc can be used).

Figure 7.1 Sequential Access

Direct Access

Another method is direct access (or relative access). A file is made up of fixed length logical records that allow programs

to read and write records rapidly in no particular order. The direct-access method is based on a disk model of a file, since

disks allow random access to any file block. For direct access, the file is viewed as a numbered sequence of blocks or

records. A direct-access file allows arbitrary blocks to be read or written. Thus, we may read block 14, then read block 53,

and then write block 7. There are no restrictions on the order of reading or writing for a direct-access file.

Other Access Methods

10

There are several access methods based on direct access method. One of such methods uses an index for a file. Index

contains pointers to various blocks. To find a record in the file, we first search the index, and then use the pointer to

access the file directly and to find the desired record. The working of indexed file is shown in Figure 7.2

Figure 7.2 Example of index and relative files

b) Describe the methods used for implementing directories.

The selection of directory-allocation and directory-management algorithms has a effect on the efficiency, performance,

and reliability of the file system.

7.9.1 Linear List

The simplest method of implementing a directory is to use a linear list of file names with pointers to the data blocks. A

linear list of directory entries requires a linear search to find a particular entry. This method is simple to program but time-

consuming to execute.

 To create a new file, we must first search the directory to be sure that no existing file has the same name. Then, we add

a new entry at the end of the directory.

 To delete a file, we search the directory for the named file, then release the space allocated to it.

To reuse the directory entry, we can do one of several things.

 Mark the entry as unused (by assigning it a special name, such as an all-blank name, or with a used-unused bit in each

entry)

 Attach it to a list of free directory entries

 Copy the last entry in the directory into the freed location, and to decrease the length of the directory.

A linked list can also be used to decrease the time to delete a file.

The real disadvantage of a linear list of directory entries is the linear search to find a file.

Directory information is used frequently, and users would notice a slow implementation of access to it.

7.9.2 Hash Table

Another data structure that has been used for a file directory is a hash table. In this method, a linear list stores the directory

entries, but a hash data structure is also used. The hash table takes a value computed from the file name and returns a

pointer to the file name in the linear list. Therefore, it can greatly decrease the directory search time. Insertion and

deletion are also straightforward, although some provision must be made for collisions situations where two file names

hash to the same location. The major difficulties with a hash table are its generally fixed size (if collision is resolved using

linear probing) and the dependence of the hash function on that size

11

6. Explain Bankers algorithm in detail

 The resource-allocation graph algorithm is not applicable when there are multiple instances for each resource. The

banker's algorithm addresses this situation, but it is less efficient. The name was chosen because this algorithm could be

used in a banking system to ensure that the bank never allocates its available cash such that it can no longer satisfy the

needs of all its customers.

When a new process enters the system, it must declare the maximum number of instances of each resource type that it

may need. This number may not exceed the total number of resources in the system. When a user requests a set of

resources, the system must determine whether the allocation of these resources will leave the system in a safe state. If

it will, the resources are allocated; otherwise, the process must wait until some other process releases enough resources.

Data structure for Banker’s algorithms is as below –

Let n be the number of processes in the system and m be the number of resource types.

 Available: Vector of length m indicating number of available resources. If Available[j] = k, there are k instances of

resource type Rj available.

 Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] = k, then process Pi may request at

most k instances of resource type Rj.

 Allocation: An n x m matrix defines the number of resources currently allocated to each process. If Allocation[i, j] = k

then Pi is currently allocated k instances of Rj.

 Need: An n x m matrix indicates remaining resource need of each process. If Need[i,j] = k, then Pi may need k more

instances of Rj to complete its task. Note that, Need [i,j] = Max[i,j] – Allocation [i,j].

The Banker’s algorithm has two parts:

1. Safety Algorithm: It is for finding out whether a system is in safe state or not. The

steps are as given below –

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 1, 2, 3, …, n.

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

2. Resource – Request Algorithm: Let Requesti be the request vector for process Pi. If

Requesti [j] = k then process Pi wants k instances of resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process

has exceeded its maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources

are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available - Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If the resulting resource allocation is safe, then the transaction is complete and

the process Pi is allocated its resources. If the new state is unsafe, then Pi must

wait for Requesti , and the old resource-allocation state is restored

7.a) State the dining philosophers’ problem and give solution for the same, using semaphores.

Five philosophers spend their lives thinking and eating.

12

 Philosophers share a common circular table surrounded by five chairs, each belonging to one philosopher.

 In center of the table is a bowl of rice (or spaghetti), and the table is laid with five single chopsticks.

 From time to time, philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks

that are between her and her left and right neighbors).

A philosopher may pick up only one chopstick at a time.

 She cannot pick up a chopstick that is already in hand of a neighbor.

 When a hungry philosopher has both her chopsticks at the same time, she eats without releasing her chopsticks.

 When she finishes eating, she puts down both of her chopsticks and start thinking again.

The problem is to ensure that no philosopher will be allowed to starve because he cannot ever pick up both

forks.

The dinning philosopher problem is considered a classic problem because it is an example of a large class of concurrency-

control problems.

 Shared data

 semaphore chopstick[5];

 Initially all values are 1

 A philosopher tries to grab the chopstick by executing wait operation and releases the chopstick by executing signal

operation on the appropriate semaphores.

13

This solution guarantees that no two neighbors are eating simultaneously but it has a possibility of creating a deadlock and

starvation.

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks if both chopsticks are available.

 An odd philosopher picks up her left chopstick first and an even philosopher picks up her right chopstick first.

 Finally no philosopher should starve.

8.a Explain

 i) Fragmentation

 ii) Thrashing

Sometimes, the size of the hole is much smaller than the overhead required to track it.Hence, normally, physical memory

is divided into fixed-size block. Then memory is allocated in terms of units. So, sometimes, the memory allocated for a

process may be slightly larger than what it requires. Such a difference is known as internal fragmentation.

For example, if the physical memory is divided into block of 4 bytes, and the process requests for 6 bytes, then it will be

allocated with 2 blocks. Hence, the total allocation is 8 bytes leading to 2 bytes of internal fragmentation.

One of the solutions to external fragmentation is compaction: shuffling of memory contents to place all free memory

together into one large block. But, compaction is possible only when relocation is dynamic and is done during execution

time. That is, if the relocation is static, we cannot apply this technique.

Another solution for external fragmentation is to permit logical-address space of a process to be non-contiguous. This

allows a process to be allocated physical memory wherever it is available. To do so, two techniques are there:

 Paging

 Segmentation

Thrashing

If the number of frames allocated to a low-priority process falls below the minimum number required by the computer

architecture, we must suspend the execution of that process. We should then page out its remaining pages, freeing all its

allocated frames. This provision introduces a swap-in, swap-out level of intermediate CPU scheduling. Whenever any

process does not have enough frames, it will page-fault. At this point, it must replace some page. However, since all its

pages are in active use, it must replace a page that will be needed again right away. Consequently, it quickly faults again,

and again, and again. The process continues to fault, replacing pages for which it then faults and brings

back in right away. This high paging activity is called thrashing. A process is thrashing if it is spending more time paging

than executing. Thrashing affects the performance of CPU as explained below:

14

If the CPU utilization is low, we normally increase the degree of multiprogramming by adding a new process to the

system. A global page-replacement algorithm is used, and hence, the new process replaces the frames belonging to other

processes as well. As the degree of multiprogramming increases, obviously there will be more page faults leading to

thrashing. When every process starts waiting for paging rather than executing, the CPU utilization decreases. This

problem is shown in Figure 3.24. The effects of thrashing can be limited by using local replacement algorithm.

8.b. Explain Linked List and grouping with respect to free space management.

Since disk space is limited, we need to reuse the space from deleted files for new files, if possible. To keep track of free

disk space, the system maintains a free-space list. The freespace list records all free disk blocks-those not allocated to

some file or directory. To create a file, we search the free-space list for the required amount of space, and allocate that

space to the new file. This space is then removed from the free-space list. When a file is deleted, its disk space is added to

the free-space list. Free-space management is done using different techniques as explained hereunder.

Linked List

Another approach to free-space management is to link together all the free disk blocks, keeping a pointer to the first free

block in a special location on the disk and caching it in memory. This first block contains a pointer to the next free disk

block, and so on. However, this scheme is not efficient. To traverse the list, we must read each block, which requires

substantial I/O time. Fortunately, traversing the free list is not a frequent action. Usually, the OS simply needs a free block

so that it can allocate that block to a file, so the first block in the free list is used.

Grouping

15

A modification of the free-list approach is to store the addresses of n free blocks in the first free block. The first n-1 of

these blocks are actually free. The last block contains the addresses of another n free blocks, and so on. The importance of

this implementation is that the addresses of a large number of free blocks can be found quickly, unlike in the standard

linked-list approach.

9(a) Explain file operations.

File is an abstract data type. To define it properly, we need to define certain operations on

it:

 Creating a file: This includes two steps: find the space in file system and make an entry

in the directory.

 Writing a file: To write a file, we make a system call specifying both the name of the file

and the information to be written to the file. Using the name of the file, the system

searches the directory to find the location of the file. The system must keep a write

pointer to the location in the file where the next write is to take place. The write pointer

must be updated whenever a write occurs.

 Reading a file: To read from a file, we use a system call that specifies the name of the

file and where (in memory) the next block of the file should be put.

 Repositioning within a file: The directory is searched for the appropriate entry, and

the current-file-position is set to a given value. This file operation is also known as file

seek.

 Deleting a file: To delete a file, search the directory. Then, release all file space and erase the directory entry.

 Truncating a file: The user may want to erase the contents of a file but keep its attributes. Rather than forcing the user

to delete the file and then recreate it, the truncation allows all attributes to remain unchanged-except for file length. The

file – length is reset to zero and its file space released.

Other common operations include appending new information to the end of an existing file and renaming an existing file.

Most of the file operations involve searching the directory for the entry associated with the named file. To avoid this

constant searching, the OS keeps small table (known as open – file table) containing information about all open files.

When a file operation is requested, this table is checked. When the file is closed, the OS removes its entry in the open-file

table.

Every file which is open has certain information associated with it:

 File pointer: Used to track the last read-write location. This pointer is unique to each process.

 File open count: When a file is closed, its entry position (the space) in the open-file table must be reused. Hence, we

need to track the number of opens and closes using the file open count.

 Disk location of the file: Most file operations require the system to modify data within the file. So, location of the file

on disk is essential.

 Access rights: Each process opens a file in an access mode (read, write, append etc).

This information is by the OS to allow or deny subsequent I/O requests.

9(b) Mention the different page table structures. Explain in brief

There are three common techniques for structuring a page table. They are:

Hierarchical Paging - Break up the logical address space into multiple page tables. A simple technique is a two-level page

table.

16

Hashed Page Table –

Inverted Page Table –

17

10.a What is deadlock? Explain with a small diagram. What are the conditions occurring when

deadlock arises?

Deadlock can be defined as the permanent blocking of a set of processes that either compete for system

resources or communicate with each other. A set of processes is deadlocked when each process in the

set is blocked awaiting an event (typically the freeing up of some requested resource) that can only be

triggered by another blocked process in the set. Deadlock is permanent because none of the events is

ever triggered

Deadlock can arise if four conditions hold simultaneously:

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

Mutual exclusion

At least one resource must be non-sharable mode i.e. only one process can use a resource at a time. The

18

requesting process must be delayed until the resource has been released. But mutual exclusion is

required to ensure consistency and integrity of a database.

Hold and wait

A process must be holding at least one resource and waiting to acquire additional resources held by

other processes.

No preemption A resource can be released only voluntarily by the process holding it after that process

has completed its task i.e. no resource can be forcibly removed from a process holding it.

Circular wait

There exists a set {P0, P1, …, Pn} of waiting processes such that P0 is waiting for a resource that is

held by P1, P1 is waiting for a resource that is held by P2,…… …, Pn–1 is waiting for a resource that

is held by Pn, and Pn is waiting for a resource that is held by P0.

10b) Explain how resource allocation graph is used to describe deadlocks

The resource allocation graph is a directed graph that depicts a state of the system of

resources and processes with each process and each resource represented by a node. Itis a graph consisting of a set of

vertices V and a set of edges E with following notations:

 V is partitioned into two types:

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

o R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

 Request edge: A directed edge Pi Rj indicates that the process Pi has requested

for an instance of the resource Rj and is currently waiting for that resource.

 Assignment edge: A directed edge Rj Pi indicates that an instance of the

resource Rj has been allocated to the process Pi

The following symbols are used while creating resource allocation graph:

Examples of resource allocation graph are shown in Figure 5.1. Note that, in Figure 5.1(c), the processes P2 and P4 are

not depending on any other resources. And, they will give up the resources R1 and R2 once they complete the execution.

Hence, there will not be any deadlock.

19

