	 	 	 	,
USN				

Internal Assessment Test II - May 2019

Sub:	ub: Discrete Mathematics and Structures				Sub Code:	18MCA23				
Date:	14 th May 2019	Duration:	90 mins	Max Marks:	50	Sem / Sec:	II MCA		OBE	
	1		Answer	all questions				MARKS	CO	RBT
		stributed w	ith mean eq	ual to 5 minute	s.	What is the	n of a shower is e probability that a	[12]	C03	L3
		rsation has a	an exponent	ance of expone al distribution w	ith	a mean of 3	n. The length of a minutes. Find the 5 minutes.	[12]	CO3	L3
	3.a) Verify Iden b) Prove tha $[(p \rightarrow q) \land (q $	t for any p	opositions	p,q,r the compo	_			[10]	COI	L3
	25			(OR)						
	4.a)Prove the lab)Rewrite the f write its negation	ollowing c	onditional i	n the form of d			hence r or read a novel"	[10]	COI	L3

USN					

Internal Assessment Test II - May 2019

			mitter man	1000001110111		ot ii iiiay	2010			*2
Sub:	Disc	rete Mathem	atics and Str	uctures		Sub Code:	18MCA23			, ,
Date:	14 th May 2019 Duration: 90 Min Max Marks: 50 Sem / Sec: II MCA						. 0	BE		
Answ	er all questions							MARKS	CO	RBT
1.							of a shower is probability that a	[12]	CO3	L3
	shower will last f	for i) less th	an 10 minut	es ii) 10 minute: (OR)	s or	more?.		A		
2.	Write the formula for mean and variance of exponential distribution. The length of a telephone conversation has an exponential distribution with a mean of 3 minutes. Find the probability that a call i) ends less than 3 minutes ii) takes between 3 and 5 minutes.							[12]	CO3	L3
	1	· ·						[10]	CO1	L3
3.	a) Verify Identit b) Prove that $[(p \rightarrow q) \land (q \rightarrow q)]$	t for any p	opositions	p,q,r the comp			on			
			(OR)	<u> </u>						
4.	a)Prove the law b)Rewrite the f negation "If I as	ollowing o	onditional	in the form o			[10] and hence write its a novel".		COI	L3

5. a)Define tautology with an example. b)State and prove distributive laws using truth table.	[15]	CO3	L3	
c) Prove the logical equivalence $[(\neg p \lor \neg q) \to (p \land q \land r)] \Leftrightarrow p \land q$ using the laws of				
logic.				
6 a)Define biconditional with an example. b) State and prove DeMorgan's laws using	[15]	COL	1.1	
truth table. c) Prove the logical equivalence $(p \to q) \land [\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$ using the laws of logic.	[13]	CO3	1.3	
7. Define normal distribution. The weekly wages of workers in a company are normally distributed with mean of Rs. 700 and standard deviation of Rs. 50. Find the probability that the weekly wage of a randomly chosen worker is i) between Rs.650 and 750 ii) more than Rs.750 given A(1)=0.3413.	[13]	CO1	1.3	
OR)				
8. Write the formula for mean and variance of normal distribution. The mean weight of 500 students of a certain school is 50 Kgs and the standard deviation is Rs.6 Kgs. Assuming that the weights are normally distributed, find the expected number of students, weighing i) between 40 and 50 Kgs ii) more than 60 Kgs, given that A(1.6667)=0.45		COI	L3	
[]		l	1	

5.a)Define tautology with an example. b)State and prove distributive laws us c) Prove the logical equivalence $[(\neg p \lor \neg q) \to (p \land q \land r)] \Leftrightarrow p \land q$ using	sing truth table. [15] g the laws of logic.	CO3	L3
(OR) 6.a)Define biconditional with an example. b) State and prove DeMorgan's law c)Prove the logical equivalence $(p \to q) \land [\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$ logic.	ws using truth table. [15] using the laws of	CO3	L3
(E)			
7.Define normal distribution. The weekly wages of workers in a condistributed with mean of Rs. 700 and standard deviation of Rs.50. Find the weekly wage of a randomly chosen worker is i) between Rs.650 and 750 is given A(1)=0.3413.	e probability that the	COI	L3
(OR)			
8. Write the formula for mean and variance of normal distribution. The students of a certain school is 50 Kgs and the standard deviation is Rs.6 Kgs weights are normally distributed, find the expected number of students, we and 50 Kgs ii) more than 60 Kgs, given that A(1.6667)=0.45	Assuming that the	COI	L3

1.0) Let & be a real constant > 0. Then the continuous probability function for which $C(x,x) = \int dx = 0 \le x \le \infty$ o elsewhere is the P.D.F called as the Exponential distribution. x is the exponential variate. It is found that $E(x, x) \ge 0$ and $\int_{-\infty}^{\infty} E(x, x) dx = 1$ Mean = $\sqrt{5}$ = $\sqrt{5}$ $e(x, x) = e(f, x) = fe^{fx}$ P(x <10) = Se(\frac{1}{5}, \pi) dx $=\frac{1}{5}\left(\frac{e^{-3/5}}{-1/5}\right)_{0}$ $-(e^{-2}e^{0})=1-e^{-1}$

ý

$$P(x \ge 10) = 1 - P(x < 10)$$

$$= 1 - 0.8647 = 0.1353 + 12$$

$$\mu = \frac{1}{4} \quad \delta^{2} = \frac{1}{4^{2}}$$

$$= \frac{1}{4} \quad \delta^{2} = \frac{1}{4^{2}}$$

$$= \frac{1}{4} \quad \delta^{3} = \frac{1}{4} \quad \delta^{4} = \frac{1}{4}$$

(12)

3a) Identity Laws for any proposition +, a) ヤンチ。= > b) トハて。= > \$ +0 +0 +0 \$ 100 0 0 1 0 0 1 0 1 1 Inverse Laws For any proposition , a) bv~b= To b) bi~b= fo ナ ~ ナハーナ ナンハナ 1 0 1 Domination Lews For any proposition p のつ やくてっこて。 らう やんちゃこち > To Fo > \tau \to

6) Þ	Q	8	/> > q	Jey-36	1 By	A A A A A A A A A A A A A A A A A A A		
	0	0	0	1	1	1			
	0	0	\\	1	\				
	0	1	P	1	0	1	0		
,	0	1	1	1	1				
***	1	0	0	0	1	0			
ï¢	L	0	1	0	1		. 0		
	No.	l	0	1	Ø	0	0		
)	1	1	1	1	1		
	A	-> B	•	,	,				
	1								
_	1				-		(I _t M)		
_	1		е						
	1			(> > a) 1 (a) ==	58) =	> -> 0		
	,		() -> a) 1 (4 -> o) = } -> o (s a tautology						
				B			(10)		
	1								

かかのころかの ~ (>>9)= ~ (~>v9) De Morgan =~(~) ハ~9 = トハーマ (Negation of a へ(も一つか) = すんです Conditional) 3

p: Iam awake

q: work on the computer

v: read a novel

> (d18)

6

> -> (ang) = ~ prang

Jam not awake or I work on the Computer or read a novel

~ (>>(ovro)) = > n~(ovro) De More = p 1 voy 1 de Morger

Jam awake and Jam not working on the Computer and Jam not reading a novel

A compound peroposition which is true for all possible truthvalues of its components is called a tautology. pr(dvs) = (brd) v(bre) トソ(かんを) = 食りめへ(りいの) for any 3 propositions +, or, dre pro pro pre pr(dre) (pra) vors)

6. a) Let & and & be two profesitions.

The conjunction of the conditionals

The conjunction of is called as the

from and & p and of denoted by

biconditional of and of denoted by

7	9.			a ->>	PCT
1	P	cy	b-> °	1	
	0	0	\	D	N
	0	1	1		
		0	O	1	
			1		
	1	1	and the second s	,	

eg p: 2 18 a prime no. q: 3 18 a prime no. per of 18 towns

~(タハマ)=~タイ~9 for any 2 peropositions +, or 0 0 0 0 0 0 0 0 (ターラタ)ハ「~のハ(で~~~)] =~ Consider (+>9) 1 [~91(6~~9)] = b->9 1 fg/(rg/rs) commutate = > > v ~ ~ absorption = ~ (>->9)->9] ~[~(トラタ)~9)

三一〇〇ハマシンマシ = ~ (> ~ (> ~ ~ ~ ~ ~)] Commutative = ~[(v) 1 (q v ~ ev) distribution = ~ [avprto] tautology = ~(arr) identity law (15) Let μ and σ be two real constants such that $-d0 < \mu < d0$ and $\sigma > 0$. Then the continuous probability distribution - (x-12)

for which N(u, x, x) = 1 e 25x the P.D.F is called a Diestribution x is the normal variable M = 700 S = 50 $J_F \propto is$ the weekly wage, $SNV Z = \frac{3C - M}{50} = \frac{3C - M}{50}$ at x = 150 2 = 1 at x = 650 2 = -1

$$P(650 \ 2 \ \times \ 250)$$
= $P(-1 \ 2 \ \times \ 1) = 2P(0 \ 2 \ \times \ 1)$
= $2A(1) = 2(0.3413)$
= 0.6826
 $P(2 \ \times \ 150) = P(2 \ \times \ 1) = P(2 \ 20) - P(0 \ 2 \ 2)$
= $0.5 = 0.3413 = 0.1587$
= $0.5 = 0.3413 = 0.1587$

Mean of Normal Distribution and variance of the given obstantian.

The given obstantian.

 $Z = \frac{x - \mu}{6} = \frac{3c - 50}{6}$
at $x = 50$ $z = 0$
at $x = 50$ $z = 0$
 $x = 1.6667$
 $x = 1$

For
$$x = 60$$
 $Z = 10/6 = 1.6667$

$$P(x > 60) = P(x > 1.6667)$$

$$= P(x > 60) - P(0 \le x \le 1.6667)$$

$$= P(x > 60) - A(1.6667)$$

$$= 0.5 - 0.4525 = 0.0475$$

$$= 0.5 - 0.4525 = 0.0475$$
Out of 500 students, estimated no.
$$0.0475 \times 500 = 24$$

*