ICNl\g'RI'ITUTE OF USN 1]|C §CMRIT
TECHNOLOGY
Internal Assessment Test 3 — May 2019(Answer Key)
Sub: Big Data Analytics Code: | 17MCA452
Date: | 15-05-19 | Duration: | 90 mins Ml\gﬁli(s: 50 Sem: IVQ& Branch: MCA

Note: Answer any 5 questions. All questions carry equal marks.

Total marks: 50

1l a

Explain the weather Data Set and in detail discuss the data format available in NCDC.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors
collecting data every hour at many locations across the globe gather a large volume of log
data, which is a good candidate for analysis with MapReduce, since it is semistructured and
record-oriented.

Data Format

The data we will use is from the National Climatic Data Center (NCDC, http://www
.ncdc.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each line is
a record. The format supports a rich set of meteorological elements, many of which are
optional or with variable data lengths. For simplicity, we shall focus on the basic elements,
such as temperature, which are always present and are of fixed width.

Write a Unix program to find the maximum recorded temperature by year from NCDC
weather records

A program for finding the maximum recorded temperature by year from NCDC weather
Records:

#!/usr/bin/env bash

for year in all/*

do

echo -ne "basename $year .gz "\t"

gunzip -c $year |\

awk '{ temp = substr($0, 88, 5) + 0;

q = substr($0, 93, 1);

if (temp 1=9999 && q ~ /[01459]/ && temp > max) max = temp }
END { print max }'

done

Write a Map Reduce full program to find the maximum recorded temperature by year
from NCDC weather records using Java.

Mapper for maximum temperature example:

import java.io.lOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io. Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable> {
private static final int MISSING = 9999;

Marks
5

10

@Override

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) =='+") { // parselnt doesn't like leading plus signs
airTemperature = Integer.parselnt(line.substring(88, 92));

}else {

airTemperature = Integer.parselnt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature '= MISSING && quality.matches("[01459]™)) {
context.write(new Text(year), new IntWritable(airTemperature));

¥
¥
k

Reducer for maximum temperature example:

import java.io.lOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer

extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}

}

Application to find the maximum temperature in the weather dataset
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MaxTemperature {

public static void main(String[] args) throws Exception {

if (args.length 1= 2) {

System.err.printIn("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);

}

Job job = new Job();

job.setJarByClass(MaxTemperature.class);

job.setJobName("Max temperature™);
FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MaxTemperatureMapper.class);

. a

b

job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

¥
¥

Write a mapper and reduce function for finding maximum temperature in ruby.
Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

STDIN.each_line do |line|

val = line

year, temp, q = val[15,4], val[87,5], val[92,1]

puts "#{year p\t#{temp}" if (temp = "+9999" && q =~ /[01459]/)
endputs "#{year P\t#{temp}" if (temp = "+9999" && q =~ /[01459]/)
end

Reducer function for maximum temperature in Ruby

#!/usr/bin/env ruby

last_key, max_val = nil, 0
STDIN.each_line do |line|

key, val = line.split("\t")

if last_key && last_key != key

puts "#{last_keyHt#{max_val}"

last_key, max_val = key, val.to_i

else

last_key, max_val = key, [max_val, val.to_i].max
end

end

puts "#{last_keyHt#{max_ val}" if last_key

Write a mapper and reduce function for finding maximum temperature in Python

Map function for maximum temperature in Python
#!/usr/bin/env python

import re

import sys

for line in sys.stdin:

val = line.strip()

(year, temp, q) = (val[15:19], val[87:92], val[92:93])
if (temp !'="+9999" and re.match("[01459]", q)):

print "%s\t%s" % (year, temp)

Reduce function for maximum temperature in Python
#!/usr/bin/env python

import sys

(last_key, max_val) = (None, 0)

for line in sys.stdin:

(key, val) = line.strip().split("\t")

if last_key and last_key != key:

print "%s\t%s" % (last_key, max_val)

(last_key, max_val) = (key, int(val))

else:

(last_key, max_val) = (key, max(max_val, int(val)))
if last_key:

print "%s\t%s" % (last_key, max_val)

4. Explain the steps involved in setting up a Client Class Path and Task Class path while
packaging a job.

The Client Class Path:

The users client-side classpath set by hadoop jar <jar> is made up of
e The job JAR file
e Any JAR files in the lib directory and the classes directory
e The class path defined by Hadoop-Classpath

The task class path;

On a cluster, map and reduce tasks run in separate JVMs and their class paths are not controlled
by hadoop classpaths.

The users classpath is comprised of the following:
e TheJob JAR file

e Any JAR files contained in the lib directory of the jobJAR files.
e Any files added to the distributed cache, using the —libjars or addFileToClassPath()

p How will you Launch a job and retrieve the results while packaging a job.

To launch the job, we need to run the driver, specifying the cluster that we want to run the job
on with the -conf option (we could equally have used the -fs and -jt options):

% hadoop jar hadoop-examples.jar v3.MaxTemperatureDriver -conf conf/hadoop-cluster.xml \
input/ncdc/all max-temp

Retrieving the Results

Once the job is finished, there are various ways to retrieve the results. Each reducer

produces one output file, so there are 30 part files named part-r-00000 to partr-

00029 in the max-temp directory. This job produces a very small amount of output, so it is
convenient to copy it from HDFS to our development machine. The -getmerge option to the
hadoop fs command is useful here, as it gets all the files in the directory specified in the source
pattern and merges them into a single file on the local filesystem:

9. 3 Explain the MapReduce web Ul.

The MapReduce Web Ul

Hadoop comes with a web Ul for viewing information about your jobs. It is useful for
following a jobs progress while it is running, as well as finding job statistics and logs
after the job has completed. You can find the Ul at hitp://resource-manager-host:
B088/.

ip-10-250-110-47 Hadoop Map/Reduce Administration

State: RUNNING

Stal

rted: Sat Apr 11 08:11:53 EDT 2009

Version: 0.20.0, r763504

u Apr 9 05:18:40 UTC 2009 by ndaley

Compiled: Th
Identifier: 200904110811

Cluster Summary (Heap Size is 53.75 MB/888.94 MB)

| Maps | Reduces | Total Submissions | [Map Task C | Reduce Task Capacity | Avg. Tasks/Node | Blacklisted Nodes |

|53

|30 |2 [11 |88 |88 | 16.00 |2 |

Scheduling Information

| @ueue Name | Scheduling Information

[defaul [Nia

Filter (Jobid, Priority, User, Name)
Example: ‘user:smith 3200" will filter by 'smith' only in the user field and ‘3200 in all fislds

Running Jobs

Joisid priority | User [Name | BIR. IMOR | ¥oBhied |Sompien | TR CSMiSTea
job_2008904110811_0002 | NORMAL | root :‘g‘r‘""pmamm 47.62% 101 48 16.26% 30 o

Completed Jobs

Jobid Priority | User |Name ?:n;:i:?abe 'II!'oal‘;l g:tel-pla&ad 22::;::: ":":t‘;i.ca gﬂ::‘:ﬁ:ad Information
job_ 200904110811 0001 | NORMAL | gonzo |WOrd | 100.00% 14 14 100.00% 30 30 NA

Failed Jobs

none

Local Logs

Log directory,

Hadoop, 2009.

The MapReduce job page

Clicking on the link for the “Tracking UI” takes us to the application master’s web UI
(or to the history page if the application has completed). In the case of MapReduce, this
takes us to the job page, illustrated in Figure 6-2.

Logoed It ax: & who
-@hadmmp MapReduce Job
job_1410450250506_0003
+ Custor 200 Oververn
vAutiiin N A
- Jod Uberized: taise
Qvervien Started: Fri Sep 12063824 EDT 2014
Counters Gapsed: Gmng, 25
Corfiguration
Mig tasks ApplcaticaMaster
Recuoe tasks Anemat Sumber St Time Nooe Lopgs
AM Logs 1 Fri Sep 12 083910 EOT 2004 [RDSRBEATSEN T N =]
* Tools Tas Type Progren Tots Parlng Funng Comaiate
Map m » “ L
Peduce s [] 0 0
Anarpt Typs New fMunmng | wne Khws Sucoewshul
Maps 25 14 e e [
Reduces] g 9 8 2

Figure 6-2. Screenshot of the job page

While the job is running, you can monitor its progress on this page. The table at the
bottom shows the map progress and the reduce progress. “Total” shows the total number
of map and reduce tasks for this job (a row for each). The other columns then show the
state of these tasks: “Pending” (waiting to run), “Running,” or “Complete” (successfully
run).

6 5Explain the Hadoop Logs with primary audience and description

Table 5-2. Types r.l_fH:irfu:Jp fugs
Logs Primary audience Description Further information

System daemon logs Administrators Each Hadoopdaemon produces a logfile jus- “System log-
ing logdj) and amother file that combines files” on page 307 and
standard out and emmor. Writtenin the direc- “Logaing” on page 349,
tory defined by the HADOOP_LOG_DIRen-

viranment variable.
HDFS audit logs Administrators & bog of all HDFS requests, tumed offbyde- “Auwdit Log-
fault. Written to the namenode’s log, al- ging” on page 344.

thawgh this is configurable.

Logs Primary audience Description Further information

MapReduce job history logs ~ Users A logofthe events (such as task completion) “Job His-
that occur in the course of runining a job. tory” on page 166.
Saved centrally on the jobtracker, and in the
job's output directary ina__fogs/histary sub-
directory.

MapReduce task logs Users Each tasktracker child process produces a This section.
logfile using log4j (called syslog), a file far
data sent to standard owt (stoaur), and a file
for standard errar (stderr). Written in the
userfagssubdirectory ofthedirectory defined
by the HADOO®_LOG_DIR environment
variable.

b Explain remote debugging with various options.

mapred.child.java.opts. These are explained in more detail in “Mem-
ory” on page 305.

Use task profiling
Java profilers give a lot of insight into the JVM, and Hadoop provides a mechanism
to profile a subset of the tasks in a job. See “Profiling Tasks" on page 177.

Use IsolationRunner
Older versions of Hadoop provided a special task runner called IsolationRunner
that could rerun failed tasks in situ on the cluster. Unfortunately, it is no longer
available in recent versions, but you can track its replacement at htips:/fissues
.apache.orgljiralbrowse/MAPREDUCE-2637.

Reproduce the failure locally
Often the failing task fails consistently on a particular input. You can try to repo-
duce the problem locally by downloading the file that the task is failing on and
running the job locally, possibly using a debugger such as Java's VisualVM.

Use JVM debugging options
A common cause of failure is a Java out of memory error in the task JVM. You can
setmapred.child. java.opts to include -XX : -HeapDumpOnOutOfMemoryError -XX:Heap
DumpPath=/path/to/dumps to produce a heap dump which can be examined after-
wards with tools like jhat or the Eclipse Memory Analyzer. Note that the JVM
options should be added to the existing memory settings specified by

7. 4 Explain the difference between old and New APIs used in Java Map reduce

There are several notable differences between the two APIs:

* The new API favors abstract classes over interfaces, since these are easier to evolve.
 The new API is in the org.apache.hadoop.mapreduce package (and subpackages).
The old API can still be found in org.apache.hadoop.mapred.

» The new APl makes extensive use of context objects that allow the user code to
communicate with the MapReduce system. The new Context, for example, essentially unifies
the role of the JobConf, the OutputCollector, and the Reporter from the old API.

« In both APIs, key-value record pairs are pushed to the mapper and reducer, but in
addition, the new API allows both mappers and reducers to control the execution

flow by overriding the run() method. For example, records can be processed in
batches, or the execution can be terminated before all the records have been processed.
In the old API this is possible for mappers by writing a MapRunnable, but no
equivalent exists for reducers.

« Configuration has been unified. The old API has a special JobConf object for job
configuration, which is an extension of Hadoop’s vanilla Configuration object

(used for configuring daemons; see “The Configuration API” on page 146). In the
new API, this distinction is dropped, so job configuration is done through a
Configuration.

« Job control is performed through the Job class in the new API, rather than the old

10

JobClient, which no longer exists in the new API.
Output files are named slightly differently: in the old API both map and reduce
outputs are named part-nnnnn, while in the new APl map outputs are named partm-
nnnnn, and reduce outputs are named part-r-nnnnn (where nnnnn is an integer
designating the part number, starting from zero).
* User-overridable methods in the new API are declared to throw java.lang.Inter
ruptedException. What this means is that you can write your code to be reponsive
to interupts so that the framework can gracefully cancel long-running operations
if it needs to3.
* In the new API the reduce() method passes values as a java.lang.lterable, rather
than a java.lang.lterator (as the old API does). This change makes it easier to
iterate over the values using Java’s for-each loop construct:
for (VALUEIN value : values) { ... }

8. 3 Write a Unit Test framework for Mapper class.

éTest
public void ignoresMissingTemperatureRecord() throws IOException,
InterruptedException %
MaxTemperatureMapper mapper = new MaxTemperatureMapper();

Text value = new Text("004301199099999195005151B004+68750+023550FM-1240382" +
/f Year nnne
"99999V0203201N00261220001CN9999999NS-+99991+99999999995 ") ;
{{ Temperature "*nns
MaxTemperatureMapper.Context context =
mock(MaxTemperatureMapper . Context.class);

Example 5-4. Unit test for MaxTemperatureMapper
import static org.mockito.Mockito.*;
import java.io.IOException;

import org.apache.hadoop.io.*;
import org.junit.*;

public class MaxTemperatureMapperTest {
@Test
public void processesValidRecord() throws IOException, InterruptedException {
MaxTemperatureMapper mapper = new MaxTemperatureMapper();
Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +

// Year Aana
"99999V0203201N00261220001CN9999999N9-00111+39999999999") ;
/ Temperature A"""A
MaxTemperatureMapper.Context context =
mock (MaxTemperatureMapper.Context.class);

mapper.map(null, value, context);

mapper.map(null, value, comtext);

verify(context, never()).write(any(Text.class), any(Inthritable.class));

b How will you manage configuration in Map Reduce? Explain it with program.

The hadoop-local.xml file contains the default Hadoop configuration for the default
filesystem and the jobtracker:

<?xml version="1.0"?>
<configuration>

<property>
<name>fs.default.name</name>
<value>file:///</value>

</property>

<property>
<name>mapred. job.tracker</name>
<value>local</value>

</property>
¢</configuration>

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both run-
ning on localhost:

<?xml version="1.0"?>
<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost/</value>

</property>

<property>
<name>mapred. job. tracker</name>
<value>localhost:B021¢/value>

</property>

¢</configuration>

