

CMR
INSTITUTE OF
TECHNOLOGY

USN 1 C

Internal Assessment Test 3 – May 2019(Answer Key)

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

 Marks

1. a Explain the weather Data Set and in detail discuss the data format available in NCDC.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors

collecting data every hour at many locations across the globe gather a large volume of log

data, which is a good candidate for analysis with MapReduce, since it is semistructured and

record-oriented.

Data Format

The data we will use is from the National Climatic Data Center (NCDC, http://www

.ncdc.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each line is

a record. The format supports a rich set of meteorological elements, many of which are

optional or with variable data lengths. For simplicity, we shall focus on the basic elements,

such as temperature, which are always present and are of fixed width.

5

 b Write a Unix program to find the maximum recorded temperature by year from NCDC

weather records

A program for finding the maximum recorded temperature by year from NCDC weather

Records:

#!/usr/bin/env bash

for year in all/*

do

echo -ne `basename $year .gz`"\t"

gunzip -c $year | \

awk '{ temp = substr($0, 88, 5) + 0;

q = substr($0, 93, 1);

if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp }

END { print max }'

done

5

2. a Write a Map Reduce full program to find the maximum recorded temperature by year

from NCDC weather records using Java.

Mapper for maximum temperature example:

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

10

Sub: Big Data Analytics Code: 17MCA452

Date: 15-05-19 Duration: 90 mins
Max

Marks: 50 Sem:
IV A &

B Branch: MCA

@Override

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs

airTemperature = Integer.parseInt(line.substring(88, 92));

} else {

airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches("[01459]")) {

context.write(new Text(year), new IntWritable(airTemperature));

}

}

}

Reducer for maximum temperature example:

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer

extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values,

Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}

}

Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

public static void main(String[] args) throws Exception {

if (args.length != 2) {

System.err.println("Usage: MaxTemperature <input path> <output path>");

System.exit(-1);

}

Job job = new Job();

job.setJarByClass(MaxTemperature.class);

job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);

job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}
3. a Write a mapper and reduce function for finding maximum temperature in ruby.

Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

STDIN.each_line do |line|

val = line

year, temp, q = val[15,4], val[87,5], val[92,1]

puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)

endputs "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)

end

Reducer function for maximum temperature in Ruby

#!/usr/bin/env ruby

last_key, max_val = nil, 0

STDIN.each_line do |line|

key, val = line.split("\t")

if last_key && last_key != key

puts "#{last_key}\t#{max_val}"

last_key, max_val = key, val.to_i

else

last_key, max_val = key, [max_val, val.to_i].max

end

end

puts "#{last_key}\t#{max_val}" if last_key

5

 b Write a mapper and reduce function for finding maximum temperature in Python

Map function for maximum temperature in Python

#!/usr/bin/env python

import re

import sys

for line in sys.stdin:

val = line.strip()

(year, temp, q) = (val[15:19], val[87:92], val[92:93])

if (temp != "+9999" and re.match("[01459]", q)):

print "%s\t%s" % (year, temp)

Reduce function for maximum temperature in Python

#!/usr/bin/env python

import sys

(last_key, max_val) = (None, 0)

for line in sys.stdin:

(key, val) = line.strip().split("\t")

if last_key and last_key != key:

print "%s\t%s" % (last_key, max_val)

(last_key, max_val) = (key, int(val))

else:

(last_key, max_val) = (key, max(max_val, int(val)))

if last_key:

5

print "%s\t%s" % (last_key, max_val)

 4. a Explain the steps involved in setting up a Client Class Path and Task Class path while

packaging a job.

The Client Class Path:

The users client-side classpath set by hadoop jar <jar> is made up of

 The job JAR file

 Any JAR files in the lib directory and the classes directory

 The class path defined by Hadoop-Classpath

The task class path;

On a cluster, map and reduce tasks run in separate JVMs and their class paths are not controlled

by hadoop classpaths.

The users classpath is comprised of the following:

 The Job JAR file

 Any JAR files contained in the lib directory of the jobJAR files.

 Any files added to the distributed cache, using the –libjars or addFileToClassPath()

5

 b How will you Launch a job and retrieve the results while packaging a job.

To launch the job, we need to run the driver, specifying the cluster that we want to run the job

on with the -conf option (we could equally have used the -fs and -jt options):

% hadoop jar hadoop-examples.jar v3.MaxTemperatureDriver -conf conf/hadoop-cluster.xml \

input/ncdc/all max-temp

Retrieving the Results

Once the job is finished, there are various ways to retrieve the results. Each reducer

produces one output file, so there are 30 part files named part-r-00000 to partr-

00029 in the max-temp directory. This job produces a very small amount of output, so it is

convenient to copy it from HDFS to our development machine. The -getmerge option to the

hadoop fs command is useful here, as it gets all the files in the directory specified in the source

pattern and merges them into a single file on the local filesystem:

5

 5. a Explain the MapReduce web UI.

10

 6 a Explain the Hadoop Logs with primary audience and description

5

 b Explain remote debugging with various options.

5

 7. a Explain the difference between old and New APIs used in Java Map reduce

There are several notable differences between the two APIs:

• The new API favors abstract classes over interfaces, since these are easier to evolve.

• The new API is in the org.apache.hadoop.mapreduce package (and subpackages).

The old API can still be found in org.apache.hadoop.mapred.

• The new API makes extensive use of context objects that allow the user code to

communicate with the MapReduce system. The new Context, for example, essentially unifies

the role of the JobConf, the OutputCollector, and the Reporter from the old API.

• In both APIs, key-value record pairs are pushed to the mapper and reducer, but in

addition, the new API allows both mappers and reducers to control the execution

flow by overriding the run() method. For example, records can be processed in

batches, or the execution can be terminated before all the records have been processed.

In the old API this is possible for mappers by writing a MapRunnable, but no

equivalent exists for reducers.

• Configuration has been unified. The old API has a special JobConf object for job

configuration, which is an extension of Hadoop’s vanilla Configuration object

(used for configuring daemons; see “The Configuration API” on page 146). In the

new API, this distinction is dropped, so job configuration is done through a

Configuration.

• Job control is performed through the Job class in the new API, rather than the old

10

JobClient, which no longer exists in the new API.

Output files are named slightly differently: in the old API both map and reduce

outputs are named part-nnnnn, while in the new API map outputs are named partm-

nnnnn, and reduce outputs are named part-r-nnnnn (where nnnnn is an integer

designating the part number, starting from zero).

• User-overridable methods in the new API are declared to throw java.lang.Inter

ruptedException. What this means is that you can write your code to be reponsive

to interupts so that the framework can gracefully cancel long-running operations

if it needs to3.

• In the new API the reduce() method passes values as a java.lang.Iterable, rather

than a java.lang.Iterator (as the old API does). This change makes it easier to

iterate over the values using Java’s for-each loop construct:

for (VALUEIN value : values) { ... }
 8. a Write a Unit Test framework for Mapper class.

5

 b How will you manage configuration in Map Reduce? Explain it with program.

5

