
CMR  

INSTITUTE OF                                                                      USN 

TECHNOLOGY                                                  
 

Internal Assessment Test 1 – March  2017 

 

                      Answer any five of the following.          5x10=50M  

1. Define Servlet. Explain the basic servlet structure and its life cycle methods.  

Java Servlets are programs that run on a Web or Application server 

 

client and databases or applications on the HTTP server. 

page forms, present records 

from a database or another source, and create web pages dynamically. 

 

web applications. 

 A servlet life cycle can be defined as the entire process from its creation till the destruction. 

The following are the paths followed by a servlet 

 

 

 

 

 

 

 

 

 

 

 

 

 

inated by calling the destroy() method. 

 

Now let us discuss the life cycle methods in details. 

The init() method : 

 

led when the servlet is first created, and not called again for each user request. So, it 

is 

used for one-time initializations, just as with the init method of applets. 

servlet, 

but you can also specify that the servlet be loaded when the server is first started. 

 

the servlet. 

The init method definition looks like this: 

public void init() throws ServletException { 

// Initialization code... 

} 

The service() method : 

 
         

  

Sub: Advanced Java Programming Code: 13MCA 42 

Date: 27.03.2017 Duration: 90 mins Max Marks:  50 Sem: 4 Branch: MCA 



 

 

from the client( browsers) and to write the formatted response back to the client. 

calls service. The service() method checks the HTTP request type (GET, POST, PUT, 

DELETE, 

etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate. 

Signature of service method: 

public void service(ServletRequest request, ServletResponse response) 

throws ServletException, IOException 

{ 

} 

ed by the container and service method invokes doGe, doPost, 

doPut, doDelete, etc.methods as appropriate. 

 

depending on what type of request you receive from the client. 

 

Here is the signature of these two methods. 

The doGet() Method 

A GET request results from a normal request for a URL or from an HTML form that has no 

METHOD specified and it should be handled by doGet() method. 

public void doGet(HttpServletRequest request, HttpServletResponse response) 

throws ServletException, IOException { 

// Servlet code 

} 

The doPost() Method 

A POST request results from an HTML form that specifically lists POST as the METHOD and 

it 

should be handled by doPost() method. 

public void doPost(HttpServletRequest request, HttpServletResponse response) 

throws ServletException, IOException 

{ 

// Servlet code 

} 

The destroy() method : 

method is called only once at the end of the life cycle of a servlet. 

 

threads, write cookie lists or hit counts to disk, and perform other such cleanup activities. 

fter the destroy() method is called, the servlet object is marked for garbage collection. 

The destroy method definition looks like this: 

public void destroy() { 

// Finalization code... 

} 

2.a. Briefly explain the different HTTP 1.1 request header  

When a browser requests for a web page, it sends lot of information to the web server which 

can  not be read directly because this information travel as a part of header of HTTP request. 

You can check HTTP Protocol for more information on this. 
  

Header Description 
  
  

Accept This header specifies the MIME types that the browser or other clients 



 can handle. Values of image/png orimage/jpeg are the two most 

 common possibilities. 

  

Accept-Charset This header specifies the character sets the browser can use to display 

 the information. For example ISO-8859-1. 

  

Accept-Encoding This header specifies the types of encodings that the browser knows 

 how to handle. Values of gzip orcompress are the two most common 

 possibilities. 

  

Accept-Language This header specifies the client's preferred languages in case the servlet 

 can produce results in more than one language. For example en, en-us, 

 ru, etc. 

  

Authorization This header is used by clients to identify themselves when accessing 

 password-protected Web pages. 

  

Connection This header indicates whether the client can handle persistent HTTP 

 connections. Persistent connections permit the client or other browser 

 to retrieve multiple files with a single request. A value of Keep- 

 Alive means that persistent connections should be used 

  

Content-Length This header is applicable only to POST requests and gives the size of 

 the POST data in bytes. 

  

Cookie This header returns cookies to servers that previously sent them to the 

 browser. 

Host This header specifies the host and port as given in the original URL. 

  

If-Modified-Since This header indicates that the client wants the page only if it has been 

 changed after the specified date. The server sends a code, 304 which 

 means Not Modifiedheader if no newer result is available. 

  

If-Unmodified- This header is the reverse of If-Modified-Since; it specifies that the 

Since operation should succeed only if the document is older than the 

 specified date. 

  

Referer This header indicates the URL of the referring Web page. For example, 

 if you are at Web page 1 and click on a link to Web page 2, the URL of 

 Web page 1 is included in the Referer header when the browser 

 requests Web page 2. 

  

User-Agent This header identifies the browser or other client making the request 

 and can be used to return different content to different types of 

 browsers. 



      

b. Write the differences between JSP and servlets 

JSP Servlets 

JSP is a webpage scripting language that can 

generate dynamic content. 

Servlets are Java programs that are already 

compiled which also creates dynamic web 

content. 

JSP run slower compared to Servlet as it takes 

compilation time to convert into Java Servlets. 

Servlets run faster compared to JSP. 

It’s easier to code in JSP than in Java Servlets. Its little much code to write here. 

In MVC, jsp act as a view. In MVC, servlet act as a controller. 

JSP are generally preferred when there is not 

much processing of data required. 

servlets are best for use when there is more 

processing and manipulation involved. 

The advantage of JSP programming over 

servlets is that we can build custom tags which 

can directly call Java beans. 

There is no such custom tag facility in 

servlets. 

We can achieve functionality of JSP at client 

side by running JavaScript at client side. 

There are no such methods for servlets. 

 

3.a With an example, explain the import attribute and the session attribute 
The import attribute is used to import class,interface or all the members of a package.It is 

similar to import keyword in java class or interface. 

Syn: 

<%@ page import=”name of class” %> 

Ex: 

<html>   

<body>   

  <%@ page import="java.util.Date" %>   

Today is: <%= new Date() %>   

  </body>   

</html>   

 

Session Attribute: 

 

http://www.withoutbook.com/Technology.php?tech=2&subject=JSP%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/Technology.php?tech=3&subject=Servlets%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/InterviewQuestionAnswer.php?tech=2&quesId=458&subject=JSP%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/Technology.php?tech=35&subject=Java%20Beans%20Interview%20Questions%20and%20Answers
http://www.withoutbook.com/Technology.php?tech=8&subject=JavaScript%20Interview%20Questions%20and%20Answers


The session attribute controls whether the page participates in HTTP sessions. Use of this 

attribute takes one of the following two forms. A value of true (the default) signifies that the 

predefined variable session (of type HttpSession) should be bound to the existing session if one 

exists; otherwise, a new session should be created and bound to session. A value of false means 

that no sessions will be automatically created and that attempts to access the variable session 

will result in errors at the time the JSP page is translated into a servlet. Using session="false" 

may save significant amounts of server memory on high-traffic sites. However, note that using 

session="false" does not disable session tracking—it merely prevents the JSP page from 

creating new sessions for users who don’t have them already. So, since sessions are user 
specific, not page specific, it doesn’t do any good to turn off session tracking for one page 
unless you also turn it off for related pages that are likely to be visited in the same client 

session. 

 

Ex: 

<% @ page session=”false”%> 

b. Write a jsp program to implement verification of a particular user login and display a 

welcome page 

index.html 
<!DOCTYPE html> 

<html> 

<head> 

<meta charset="UTF-8"> 

<title>Insert title here</title> 

</head> 

<body bgcolor="pink"> 

<form action="prg5.jsp”> 

<!-- username : <input type="text"  --> 

User name :  <input type="text" name="uname"><br> 

<!-- password : <input type="password"  --> 

password: <input type="password" name="pass"><br> 

<input type="submit" value="submit"></form></body> 

</html> 

prg5.jsp 

<%@ page language="java" contentType="text/html; charset=UTF-8" 

    pageEncoding="UTF-8"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<title>Insert title here</title> 

</head> 

<body bgcolor="pink"> 

<%String user="MCA"; 

String pass="CMRIT"; 

//Getting the input uname from the html form and storing in String ‘uname’ 
String uname=request.getParameter("uname"); 

//Getting the input pass from the html form and storing in String ‘password’ 
String password=request.getParameter("pass"); 

// checking for the valid username and password 



if(user.equals(uname) && pass.equals(password)) 

{ 

 //Printing the welcome message with username and password 

 out.print("<b>Welcome</b>"+uname+"<br>"); 

 out.print("Username is:"+uname+"<br>"); 

 out.print("Password is:"+pass); 

} 

else 

{ 

 //Printing the message  “Invalid User name and Password”  in the web Browser 

 out.println("invalid UserName AND PASSWORD"); 

} 

%> 

</body> 

</html> 

 

4. Explain different types of session tracking techniques with example 

Hidden Form: 

<INPUT TYPE="HIDDEN" NAME="session" VALUE="a1234"> 

This entry means that, when the form is submitted, the specified name and valare automatically 

included in the GET or POST data. This hidden field can be used tostore information about the 

session but has the major disadvantage that it only works if every page is dynamically 

generated by a form submission. Clicking on a regular hypertext link does not result in a form 

submission, so hidden form fields cannot support general session tracking, only tracking within 

a specific series ooperations such as checking out at a store. 

Cookies 

Cookies are small bits of textual information that a web server sends to a browser and that the 

browser later returns unchanged when visiting the same web site or domain 

Sending cookies to the client: 

1.Creating a cookie object 

• Cookie():constructs a cookie. 

• Cookie(String name, String value)constructs a cookie with a specified name and value. 

    EX: 

     Cookie ck=new Cookie("user",”mca");  
2.Setting the maximum age 

   setMaxAge() is used to specify how long (in seconds) the cookie should be valid. 

Ex:cookie.setMaxAge(60*60*24);  

3.Placing the cookie into the HTTP response headers. 

We  use response.addCookie to add cookies in the HTTP response header as follows: 

       response.addCookie(cookie); 

Reading cookies from the client: 

1. Call request.getCookies(). This yields an array of cookie objects. 

2. Loop down the array, calling getName on each one until you find the cookie of interest.  

 Ex: 

 String cookieName=“userID”;  
Cookie[] cookies=request.getCookies(); 

If(cookies!=null) 

{ 

 for(int i=0;i<cookies.length;i++){ 

      Cookie cookie=cookies[i]; 



       if(cookieName.equals(cookie.getName())){ 

           doSomethingwith(cookie.getValue()); 

}}} 

 

Session Tracking: 

1. Accessing the session object associated with the currentrequest.  

Call request.getSession to get an HttpSessionobject, which is a simple hash table for storing 

user-specific data. 

2. Looking up information associated with a session. 

Call  getAttribute on the HttpSession object, cast the return value to the appropriate type, and 

check whether the result is null.  

3.Storing information in a session.  

Use setAttribute with a key and a value. 

4.Discarding session data.  

Call removeAttribute to discard a specific value. Call invalidate to discard an entire session. 

Call logout to log the client out of the Web server and invalidate all sessions associated with 

that user. 

5. Write a servlet program using cookies to remember user preferences. 

Servlet1.java 

package j2ee.prg4; 

 

import java.io.*; 

import javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; 

import javax.servlet.http.HttpServlet; 

import javax.servlet.http.Cookie; 

import javax.servlet.http.HttpServletRequest; 

import javax.servlet.http.HttpServletResponse; 

/** 

 * Servlet implementation class store 

 */ 

@WebServlet("/store") 

public class store extends HttpServlet { 

 private static final long serialVersionUID = 1L; 

        

    /** 

     * @see HttpServlet#HttpServlet() 

     */ 

    public store() { 

        super(); 

        // TODO Auto-generated constructor stub 

    } 

 

 /** 

  * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response) 

  */ 

 protected void doPost(HttpServletRequest request, HttpServletResponse response) throws 

ServletException, IOException { 

   

 // Setting the HTTP Content-Type response header to text/html 

 response.setContentType("text/html;charset=UTF-8"); 

 // Returns a PrintWriter object that can send character text to the client. 

 PrintWriter out=response.getWriter(); 

 try 
 { 

  //Requesting input color from html page and storing in String variable s1 



  String s1=request.getParameter("color"); 

  //Checking the color either RED or Green or Blue 

  if (s1.equals("RED")||s1.equals("BLUE")||s1.equals("GREEN")) 

  { 

   // Creating cookie object ck1 and storing the selected color 

   Cookie ck1=new Cookie("color",s1); 

   //adding the cookie to the response 

   response.addCookie(ck1); 

   //writing the output in the html format 

   out.println("<html>"); 

   out.println("<body>"); 

   out.println("You selected: "+s1); 

   out.println("<form action='retrieve' method='post'>"); 

   out.println("<input type='Submit' value='submit'/>"); 

   out.println("</form>"); 

   out.println("</body>"); 

   out.println("</html>"); 

    } 

 } 

 finally 

 { 

  //Closing the output object   

      out.close();  

 } 

  }   

} 
 
 

retrieve.java 
 
package j2ee.prg4; 

 

import java.io.IOException; 

import java.io.PrintWriter; 

 

import javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; 

import javax.servlet.http.HttpServlet; 

import javax.servlet.http.Cookie; 

import javax.servlet.http.HttpServletRequest; 

import javax.servlet.http.HttpServletResponse; 

 

/** 

 * Servlet implementation class retrieve 

 */ 

@WebServlet("/retrieve") 

public class retrieve extends HttpServlet { 

 private static final long serialVersionUID = 1L; 

        

    /** 

     * @see HttpServlet#HttpServlet() 

     */ 

    public retrieve() { 

        super(); 

        // TODO Auto-generated constructor stub 

    } 

 /** 

  * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response) 

  */ 



 protected void doPost(HttpServletRequest request, HttpServletResponse response) throws 

ServletException, IOException { 

   

  // Setting the HTTP Content-Type response header to text/html 

  response.setContentType("text/html;charset=UTF-8"); 

  // Returns a PrintWriter object that can send character text to the client. 

  PrintWriter out=response.getWriter(); 

  try 

  { 

       //Requesting all the cookies and stored in cookie array ck[] 

    Cookie ck[]=request.getCookies(); 

    out.println("<html>"); 

    out.println("<head>"); 

    out.println("<title>servlet</title>"); 

    out.println("</head>"); 

    // Getting the value from cookie and setting the HTML form background color 

    out.println("<body bgcolor="+ck[0].getValue()+">"); 

    //Getting the value from cookie and displaying the color name in HTML form 

    out.println("You selected color is: "+ck[0].getValue()+"</h1>"); 

    out.println("</body>"); 

    out.println("</html>"); 

  } 

  finally 
  { 

   //closing the printwriter object out 

   out.close(); 

  } 

 } 

 

} 
 

Index.jsp 
 
<!DOCTYPE html> 

<html> 

<head> 

<meta charset="UTF-8"> 

<title>Insert title here</title> 

</head> 

<body> 

<!-- send the form data to the url store and the post method is used  --> 

<form action="store" method="post"> 

<!-- Display the Radio button with three option  --> 

RED:<input type="radio" name="color" value="RED"/><br> 

GREEN:<input type="radio" name="color" value="GREEN"/><br> 

BLUE:<input type="radio" name="color" value="BLUE"/><br> 

<input type="submit" value="submit"/> 

</form> 

</body> 

</html> 
 

6.a.Explain the following action tags with a code snippet. 

i)<jsp:forward> 

ii)<jsp:parameter> 

 

i)<jsp:forward> 
The jsp:forward action tag is used to forward the request to another resource it may be 

jsp, html or another resource. 



Syn:  
<jsp:forward  page=”name of resource” /> 

Ex: 
<%@ page language="java" contentType="text/html; charset=UTF-8" 

    pageEncoding="UTF-8"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<title>Insert title here</title> 

</head> 

<body> 

<!-- send the form data to login.jsp and the get method is used  --> 

<form method="get" action="login.jsp"> 

UserName :  <input type="text" name ="name"><br> 

Password :  <input type="password" name ="pass"><br> 

<input type="Submit" value ="Submit"/><br> 

</form> 

</body> 

</html> 
 

login.jsp 
<%@ page language="java" contentType="text/html; charset=UTF-8" 

    pageEncoding="UTF-8"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<title>Insert title here</title> 

</head> 

<body> 

<% 

//Getting the input name from the html form and storing in String ‘uname’ 

String uname = request.getParameter("name"); 

//Getting the input pass from the html form and storing in String ‘upass’ 
String upass = request.getParameter("pass"); 

if(uname.equals("admin") && upass.equals("admin")) 

{ 

 %> 

 <jsp:forward page="main.jsp"></jsp:forward> 

 

<% 

} 

%> 

</body> 

</html> 
 
main.jsp 
 
<%@ page language="java" contentType="text/html; charset=UTF-8" 

    pageEncoding="UTF-8"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<title>Insert title here</title> 



</head> 

<body> 

<% 

// Getting the input name from the html form and storing in String ‘un’--> 

String un=request.getParameter("name"); 

// Getting the input pass from the html form and storing in String ‘pw’--> 

String pw=request.getParameter("pass"); 

%> 

<h1>welcome:<%=un%></h1> 

<h1>your user name is:<%=un%></h1> 

<h1>your password is:<%=pw%></h1> 

</body> 

</html> 
 

b. Write the differences between <jsp:include> action tag and include directive.

 
7.What is the use of get() and post() methods. 

Write a servlet program  to implement and demonstrate get () and post() methods. 
package prg3.j2ee; 

import java.io.*; 

import javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; 



import javax.servlet.http.HttpServlet; 

import javax.servlet.http.HttpServletRequest; 

import javax.servlet.http.HttpServletResponse; 

  

/** 

 * Servlet implementation class prg3 

 */ 

@WebServlet("/prg3") 

public class prg3 extends HttpServlet { 

 private static final long serialVersionUID = 1L; 

        

    /** 

     * @see HttpServlet#HttpServlet() 

     */ 

    public prg3() { 

        super(); 

        // TODO Auto-generated constructor stub 

    } 

 

 /** 

  * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse response) 

  */ 

 protected void doPost(HttpServletRequest request, HttpServletResponse response) throws 

ServletException, IOException { 

   

  // Setting the HTTP Content-Type response header to text/html 

  response.setContentType("text/html"); 

  // Returns a PrintWriter object out that can send character text to the client. 

  PrintWriter out=response.getWriter(); 

  // To retrieve the optional values (color) from HTML page and store in the string color 

  String col = request.getParameter("color"); 

  out.println("<html><body bgcolor="+col+">"); 

  out.println("You have selected "+col); 

  out.println("</body></html>"); 

  out.close(); 

 } 

} 
 
index.html 
 
<!DOCTYPE html> 

<html> 

<head> 

<meta charset="UTF-8"> 

<title>Insert title here</title> 

</head> 

<body> 

<!-- send the form data to url mapping “prg3“ and the get method is used  --> 

<form method ="post" action="prg3"> 

<!--Display 3 Colors RED, BLUE, GREEN in the dropdown Box --> 

<select name="color" size="1"> 

<Option value="red">RED</Option> 

<Option value="green">GREEN</Option> 

<Option value="blue">BLUE</Option> 

</select> 

<input type="Submit" value="Enter"> 

</form> 

</body> 

</html> 



 

            


