
Page 1 of 8

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - I

Sub: Software Testing and Practices Code: 13MCA444

Date: 28.03.2017 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) Explain the relationship of Human, Errors and Testing with example.

Error is a part of our daily life. Humans make errors in their thoughts, in their

actions and in the products that might result from their actions. Errors occur

almost everywhere like in observation, in speech, in medical prescription, in

surgery, in sport and similarly in software development. An error might be

insignificant like a slip of tongue or might lead to a catastrophe like a burst tyre

in an airbus. To determine whether there are any errors in our thought, actions

and products generated, we resort to the process of testing. The primary goal of

testing is to determine if the thoughts, actions and products are as desired, that is

they conform to the requirements. Testing of thoughts is usually designed to

determine if a concept or method has been understood satisfactorily. Testing of

actions is designed to check if a skill that results in actions has been acquired

satisfactorily. Testing of product is designed to check if the product behaves as

desired.

[5] CO1 L4

(b)
List out quality attributes of software and explain each of them

Static quality attributes: structured, maintainable, testable code as well as

the availability of correct and complete documentation.

Dynamic quality attributes: software reliability, correctness, completeness,

consistency, usability, and performance

Reliability is a statistical approximation to correctness, in the sense that

100% reliability is indistinguishable from correctness. Roughly speaking,

reliability is a measure of the likelihood of correct function for some ǲunitǳ of
behavior, which could be a single use or program execution or a period of time.

Correctness will be established via requirement specification and the

program text to prove that software is behaving as expected. Though

correctness of a program is desirable, it is almost never the objective of testing.

To establish correctness via testing would imply testing a program on all

elements in the input domain. In most cases that are encountered in practice,

this is impossible to accomplish. Thus correctness is established via

mathematical proofs of programs.

While correctness attempts to establish that the program is error free, testing

attempts to find if there are any errors in it. Thus completeness of testing does

not necessarily demonstrate that a program is error free.

Completeness refers to the availability of all features listed in the

requirements, or in the user manual. Incomplete software is one that does not

fully implement all features required.

 [5] CO2 L1

Page 2 of 8

Consistency refers to adherence to a common set of conventions and

assumptions. For example, all buttons in the user interface might follow a

common color coding convention. An example of inconsistency would be when

a database application displays the date of birth of a person in the database.

Usability refers to the ease with which an application can be used. This is an

area in itself and there exist techniques for usability testing. Psychology plays

an important role in the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested

task. It is considered as a non-functional requirement. It is specified in terms

such as ``This task must be performed at the rate of X units of activity in one

second on a machine running at speed Y, having Z gigabytes of memory."

2(a) Define the terminologies organizational metrics, project metrics, process metrics

and product metrics with example.

Organizational Metrics: These metrics measure the impact of organizational

economics, employee satisfaction, communication and organizational growth factors

of the project. Example: Average defect density across all software projects in a

company is 1.73 defects/KLOC.

Project Metrics: These are metrics that pertain to Project Quality. They are used to

quantify defects, cost, schedule, productivity and estimation of various project

resources and deliverables. Example: ratio of number of successful test to number of

tests conducted.

Process Metrics: These are metrics that pertain to Process Quality. They are used to

measure the efficiency and effectiveness of various processes. Example: measure of

defects found in unit test, integration test, system test.

Product Metrics: These are metrics that pertain to Product Quality. They are used to

ŵeasuƌe cost, Ƌuality aŶd the pƌoduct’s tiŵe-to-market. Example: Product complexity

metric (cyclomatic complexity)

[6] CO3 L1

(b)
Differentiate between verification and validation

[4] CO1 L2

3(a) How is hardware testing different from software testing?

[5] CO1 L4

Page 3 of 8

Software Product Hardware Product

Does not degrade over time Degrades over time

Fault present in application

will remain and no new fault

will creep in unless application

is changed.

VLST chip might fail over time

due to a fault that did not

exist at the time chip was

manufactured and tested.

Built-in self test meant for

hardware product, rarely can

be applied to software design

and code.

BIST intend to actually test for

the correct functioning of a

circuit

It only detects faults that were

present when the last change

was made

Hardware testers generate

test based on fault models e.g

Stuck-at fault model – one can

use a set of input test patterns

to test whether a logic gate is

functioning as expected

(b) Discuss the defect life-cycle and draw an appropriate diagram

Defect life cycle, also known as Bug Life cycle is the journey of a defect cycle,

which a defect goes through during its lifetime. It varies from organization to

organization and also from project to project as it is governed by the software

testing process and also depends upon the tools used.

Defect Life Cycle States:

 New - Potential defect that is raised and yet to be validated.

 Assigned - Assigned against a development team to address it but not yet

resolved.

 Active - The Defect is being addressed by the developer and investigation

is under progress. At this stage there are two possible outcomes; viz -

Deferred or Rejected.

 Test - The Defect is fixed and ready for testing.

 Verified - The Defect that is retested and the test has been verified by QA.

 Closed - The final state of the defect that can be closed after the QA

retesting or can be closed if the defect is duplicate or considered as NOT a

defect.

 Reopened - When the defect is NOT fixed, QA reopens/reactivates the

[5] CO4 L2

Page 4 of 8

defect.

 Deferred - When a defect cannot be addressed in that particular cycle it is

deferred to future release.

 Rejected - A defect can be rejected for any of the 3 reasons; viz - duplicate

defect, NOT a Defect, Non Reproducible.

4(a) Discuss how levels of testing are associated with levels of software development.

Draw a supporting diagram.

Levels of testing echo the levels of abstraction found in the waterfall model of the

software development life cycle. Although this model has its drawbacks, it is useful

for testing as a means of identifying distinct levels of testing and for clarifying the

objectives that pertain to each level. A diagrammatic variation of the waterfall

model, known as the V-Model in ISTQB parlance, is given in Figure 1.8; this

variation emphasizes the correspondence between testing and design levels.

Notice that, especially in terms of specification-based testing, the three levels of

definition (specification, preliminary design, and detailed design) correspond

directly to three levels of testing— system, integration, and unit testing. A practical

relationship exists between levels of testing versus specification-based and code

based testing. Most practitioners agree that code-based testing is most appropriate

at the unit level, whereas specification-based testing is most appropriate at the

system level. This is generally true; however, it is also a likely consequence of the

base information produced during the requirements

specification, preliminary design, and detailed design phases. The constructs

defined for code-based testing make the most sense at the unit level, and similar

constructs are only now becoming available for the integration and system levels

of testing. We develop such structures in Chapters 11 through 17 to support code-

based testing at the integration and system levels for both traditional and object-

oriented software.

[5] CO1 L2

(b) List down the best practices for writing good test case.

Best Practice for writing good Test Case Example.

1. Test Cases need to be simple and transparent:

Create test cases that are as simple as possible. They must be clear and concise as

the author of test case may not execute them.

Use assertive language like go to home page, enter data, click on this and so on.

This makes the understanding the test steps easy and test execution faster.

2. Create Test Case with End User in Mind

Ultimate goal of any software project is to create test cases that meets customer

requirements and is easy to use and operate. A tester must create test cases

keeping in mind the end user perspective

3. Avoid test case repetition.

Do not repeat test cases. If a test case is needed for executing some other test case,

call the test case by its test case id in the pre-condition column

4. Do not Assume

Do not assume functionality and features of your software application while

preparing test case. Stick to the Specification Documents.

5. Ensure 100% Coverage

Make sure you write test cases to check all software requirements mentioned in

the specification document. Use Traceability Matrix to ensure no

[5] CO2 L1

Page 5 of 8

functions/conditions is left untested.

6. Test Cases must be identifiable.

Name the test case id such that they are identified easily while tracking defects or

identifying a software requirement at a later stage.

7. Implement Testing Techniques

It's not possible to check every possible condition in your software application.

Testing techniques help you select a few test cases with the maximum possibility of

finding a defect.

Boundary Value Analysis (BVA): As the name suggests it's the technique that

defines the testing of boundaries for specified range of values.

Equivalence Partition (EP): This technique partitions the range into equal

parts/groups that tend to have the same behavior.

State Transition Technique: This method is used when software behavior

changes from one state to another following particular action.

Error Guessing Technique: This is guessing/anticipating the error that may arise

while testing.This is not a formal method and takes advantages of a tester's

experience with the application

8. Self cleaning

The test case you create must return the test environment to the pre-test state and

should not render the test environment unusable. This is especially true for

configuration testing.

9. Repeatable and self-standing

The test case should generate the same results every time no matter who tests it

10. Peer Review.

After creating test cases, get them reviewed by your colleagues. Your peers can

uncover defects in your test case design, which you may easily miss.

5(a) Discuss the six basic principles underlying the analysis and testing techniques.

• General engineering principles:

– Partition: divide and conquer

– Visibility: making information accessible

– Feedback: tuning the development process

• Specific A&T principles:

– Sensitivity: better to fail every time than sometimes

– Redundancy: making intentions explicit

– Restriction: making the problem easier

[6] CO2 L2

(b) Explain the difference between error, fault, failure and incident.

Error—People make errors. A good synonym is mistake. When people make

mistakes while coding, we call these mistakes bugs. Errors tend to propagate; a

requirements error may be magnified during design and amplified still more

during coding.

Fault—A fault is the result of an error. It is more precise to say that a fault is the

representation of an error, where representation is the mode of expression,

such as narrative text, Unified Modeling Language diagrams, hierarchy charts,

and source code. Defect is a good synonym for fault, as is bug. Faults can be

elusive. An error of omission results in a fault in which something is missing

that should be present in the representation. This suggests a useful refinement;

we might speak of faults of commission and faults of omission. A fault of

commission occurs when we enter something into a representation that is

incorrect. Faults of omission occur when we fail to enter correct information. Of

these two types, faults of omission are more difficult to detect and resolve.

Failure—A failure occurs when the code corresponding to a fault executes. Two

subtleties arise here: one is that failures only occur in an executable

representation, which is usually taken to be source code, or more precisely,

loaded object code; the second subtlety is that this definition relates failures

only to faults of commission. How can we deal with failures that correspond to

faults of omission? We can push this still further: what about faults that never

happen to execute, or perhaps do not execute for a long time? Reviews prevent

many failures by finding faults; in fact, well-done reviews can find faults of

omission.

Incident—When a failure occurs, it may or may not be readily apparent to the

user (or customer or tester). An incident is the symptom associated with a

failure that alerts the user to the occurrence of a failure.

[4] CO1 L4

Page 6 of 8

6(a) Discuss defect severity and defect priority with suitable examples.

Severity can be of following types:

• Critical: The defect that results in the termination of the complete system

or one or more component of the system and causes extensive corruption

of the data. The failed function is unusable and there is no acceptable

alternative method to achieve the required results then the severity will

be stated as critical.

• Major: The defect that results in the termination of the complete system

or one or more component of the system and causes extensive corruption

of the data. The failed function is unusable but there exists an acceptable

alternative method to achieve the required results then the severity will

be stated as major.

• Moderate: The defect that does not result in the termination, but causes

the system to produce incorrect, incomplete or inconsistent results then

the severity will be stated as moderate.

• Minor: The defect that does not result in the termination and does not

damage the usability of the system and the desired results can be easily

obtained by working around the defects then the severity is stated as

minor.

• Cosmetic: The defect that is related to the enhancement of the system

where the changes are related to the look and field of the application then

the severity is stated as cosmetic.

Priority can be of following types:

• Low: The defect is an irritant which should be repaired, but repair can be

deferred until after more serious defect have been fixed.

• Medium: The defect should be resolved in the normal course of

development activities. It can wait until a new build or version is created.

• High: The defect must be resolved as soon as possible because the defect

is affecting the application or the product severely. The system cannot be

used until the repair has been done.

Example:

• High Priority & High Severity: An error which occurs on the basic

functionality of the application and will not allow the user to use the

system. (Eg. A site maintaining the student details, on saving record if it, doesnǯt allow to save the record then this is high priority and high severity
bug.)

• High Priority & Low Severity: The spelling mistakes that happens on the

cover page or heading or title of an application.

• High Severity & Low Priority: An error which occurs on the functionality

of the application (for which there is no workaround) and will not allow

the user to use the system but on click of link which is rarely used by the

end user.

• Low Priority and Low Severity: Any cosmetic or spelling issues which is

within a paragraph or in the report (Not on cover page, heading, title).

[6] CO4 L2

(b) Compare specification based testing and code based testing.

The Differences Between Black Box Testing (or specification based testing)

and White Box Testing (or code based testing) are listed below.

Criteria Black Box Testing White Box Testing

Definition

Black Box Testing is a software

testing method in which the

internal structure/ design/

implementation of the item being

tested is NOT known to the

tester

White Box Testing is a

software testing method in

which the internal structure/

design/ implementation of

the item being tested is

known to the tester.

Levels

Applicable To

Mainly applicable to higher

levels of testing:Acceptance

Mainly applicable to lower

levels of testing:Unit Testing,

[4] CO1 L4

Page 7 of 8

Testing , System Testing Integration Testing

Responsibility
Generally, independent Software

Testers

Generally, Software

Developers

Programming

Knowledge
Not Required Required

Implementatio

n Knowledge
Not Required Required

Basis for Test

Cases
Requirement Specifications Detail Design

7(a) Explain the Next Date problem and write the pseudo code.

NextDate is a function of three variables: month, date, and year. It returns the

date of the day after

the input date. The month, date, and year variables have integer values subject

to these conditions

(the year range ending in 2012 is arbitrary, and is from the first edition): cͳ. ͳ ≤ month ≤ ͳʹ cʹ. ͳ ≤ day ≤ ͵ͳ c͵. ͳͺͳʹ ≤ year ≤ ʹͲͳʹ

Pseudo-code:

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer

Dim day,month,year As Integer Output ȋǲEnter todayǯs date in the form MM DD YYYYǳȌ

Input (month, day, year)

Case month Of Case ͳ: month Is ͳ,͵,ͷ,͹,ͺ, Or ͳͲ: Ǯ͵ͳ day months ȋexcept Dec.Ȍ

If day < 31

Then tomorrowDay = day + 1

Else

tomorrowDay = 1

tomorrowMonth = month + 1

EndIf Case ʹ: month Is Ͷ,͸,ͻ, Or ͳͳ Ǯ͵Ͳ day months

If day < 30

Then tomorrowDay = day + 1

Else

tomorrowDay = 1

tomorrowMonth = month + 1

EndIf Case ͵: month Is ͳʹ: ǮDecember

If day < 31

Then tomorrowDay = day + 1

Else

tomorrowDay = 1

tomorrowMonth = 1

If year = 2012 Then Output ȋǲʹͲͳʹ is overǳȌ

Else tomorrow.year = year + 1

EndIf Case Ͷ: month is ʹ: ǮFebruary

If day < 28

Then tomorrowDay = day + 1

Else

If day = 28

Then If ((year is a leap year) Then tomorrowDay = ʹͻ Ǯleap year Else Ǯnot a leap year

tomorrowDay = 1

tomorrowMonth = 3

[6] CO4 L4

Page 8 of 8

EndIf

Else If day = 29

Then If ((year is a leap year)

Then tomorrowDay = 1

tomorrowMonth = 3 Else Ǯnot a leap year OutputȋǲCannot have Feb.ǳ, dayȌ

EndIf

EndIf

EndIf

EndIf

EndCase Output ȋǲTomorrowǯs date isǳ, tomorrowMonth, tomorrowDay, tomorrowYearȌ

End NextDate

(b) List down the different fault types and give two examples of each.

Our definitions of error and fault hinge on the distinction between process and

product: process refers to how we do something, and product is the end result of a

process. The point at which testing and Software Quality Assurance (SQA) meet is

that SQA typically tries to improve the product by improving the process. In that

sense, testing is clearly more product oriented. SQA is more concerned with

reducing errors endemic in the development process, whereas testing is more

concerned with discovering faults in a product. Both disciplines benefit from a

clearer definition of types of faults. Faults can be classified in several ways: the

development phase in which the corresponding error occurred, the consequences

of corresponding failures, difficulty to resolve, risk

of no resolution, and so on. My favorite is based on anomaly (fault) occurrence: one

time only, intermittent, recurring, or repeatable. For a comprehensive treatment of

types of faults, see the IEEE Standard Classification for Software Anomalies (IEEE,

1993). (A software anomaly is defined in that document as ǲa departure from the expected,ǳ which is pretty close to our definition.Ȍ The IEEE
standard defines a detailed anomaly resolution process built around four phases

(another life cycle): recognition, investigation, action, and disposition.

Fault Types:

Input/Output Faults
ICorrect input not accepted
Incorrect input accepted
Output Wrong format
Wrong result
Cosmetic

Logic Faults
Missing case(s)
Duplicate case(s)
Extreme condition neglected
Wrong operator (e.g., < instead of ≤)
1.3 Computation Faults
Incorrect algorithm
Missing computation
Incorrect operand
Incorrect operation

Interface Faults
Incorrect interrupt handling
I/O timing
Call to wrong procedure
Call to nonexistent procedure
Parameter mismatch (type, number)
Incompatible types
Superfluous inclusion

Data Faults
Incorrect initialization
Incorrect storage/access
Wrong flag/index value
Incorrect packing/unpacking
Wrong variable used

[4] CO6 L1

