Subject

:Python Programming

Subject Code:16MCA21

IA1 -Solution

1a)Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is designed to be
highly readable. It uses English keywords frequently where as other languages use punctuation, and it has fewer
syntactical constructions than other languages.

Python is Interpreted: Python is processed at runtime by the interpreter. You do not need to compile
your program before executing it. This is similar to PERL and PHP.

Python is Interactive: You can actually sit at a Python prompt and interact with the interpreter directly to
write your programs.

Python is Object-Oriented: Python supports Object-Oriented style or technique of programming that
encapsulates code within objects.

Python is a Beginner's Language: Python is a great language for the beginner-level programmers and
supports the development of a wide range of applications from simple text processing to WWW
browsers to games.

Python's features include:

b)

Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax. This allows the
student to pick up the language quickly.

Easy-to-read: Python code is more clearly defined and visible to the eyes.

Easy-to-maintain: Python's source code is fairly easy-to-maintain.

A broad standard library: Python's bulk of the library is very portable and cross-platform compatible on
UNIX, Windows, and Macintosh.

Interactive Mode:Python has support for an interactive mode which allows interactive testing and
debugging of snippets of code.

Portable: Python can run on a wide variety of hardware platforms and has the same interface on all
platforms.

Extendable: You can add low-level modules to the Python interpreter. These modules enable
programmers to add to or customize their tools to be more efficient.

Databases: Python provides interfaces to all major commercial databases.

GUI Programming: Python supports GUI applications that can be created and ported to many system
calls, libraries and windows systems, such as Windows MFC, Macintosh, and the X Window system of
Unix.

Scalable: Python provides a better structure and support for large programs than shell scripting.

#program to find the largest of three nos:

a=int(input(“enter first no”))

b=int(input(“enter second no”))

c=int(input(“enter third no”))

if b<a>c:
print

a,” is greatest”

elif ac:

print b,”is greatest”

else:
print
c)i)True

¢,”is greatest”
ii) True

2a) A name that refers to a value is called a variable. In Python,variable names can use letters, digits, and the
underscore symbol (but theycan’t start with a digit). For example, X, species5618, and degrees_celsius are all

allowed,

but 777 isn’t (it would be confused with a number), and neither isno-way! (it contains punctuation).

Subject :Python Programming

Subject Code:16MCA21

You create a new variable by assigning it a value:

>>> degrees_celsius = 26.0

a memory model—that will let us trace what happens when Python executes a Python program. This memory
model will help us accurately predict and explain what Python does when it executes code, a skill that is a
requirement for becoming a good programmer.Every location in the computer’s memory has a memory address,
much like an address for a house on a street, that uniquely identifies that location.

id1:float
26.0

During execution of a program,every value that Python keeps track of is stored inside an object in
computer memory.In our memory model, a variable contains the memory address of the object
to which it refers:

id1:float
degrees celsius | id1 +—p» 26.0

b)#python program demonstrating customer class
class customer:
def _init_(self,cname,balance):
self.cname=cname
self.balance=balance
def withdraw(amt):
if amt>self.balance:
print”insufficient funds”
else:
self.balance=self.balance-amt
print “amt is debited”
def deposit(amt):
self.balance=self.balance+amt
print “amt is credited”
#main code
C=customer()
c.withdraw(1000)
c.deposit(10000)
3a) Conditionals in Python:

The syntax of the if...else statement is -

if expression:
statement(s)
else:

statement(s)

Subject :Python Programming
Subject Code:16MCA21

Flow Diagram

If condition

is true
condition

If condition
is false

else code

®

The elif Statement

The elif statement allows you to check multiple expressions for TRUE and execute a block of code as soon as one
of the conditions evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike else, for which there can be at most one

statement, there can be an arbitrary number of elif statements following an if.

syntax
if expression1:
statement(s)

elif expression2:
statement(s)
elif expression3:
statement(s)
else:

statement(s)

b)output:
able

ble

le

e
4a) A function is a block of organized, reusable code that is used to perform a single, related action. Functions
provide better modularity for your application and a high degree of code reusing.

Subject :Python Programming
Subject Code:16MCA21
Defining a Function
You can define functions to provide the required functionality. Here are simple rules to define a function in
Python.
e Function blocks begin with the keyword def followed by the function name and parentheses (()).
e Any input parameters or arguments should be placed within these parentheses. You can also define
parameters inside these parentheses.
e The first statement of a function can be an optional statement - the documentation string of the function
or docstring.
e The code block within every function starts with a colon (:) and is indented.
e The statement return [expression] exits a function, optionally passing back an expression to the caller. A
return statement with no arguments is the same as return None.

Syntax
def functionname(parameters):

"function_docstring"
function_suite
return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order that they were

defined.

Example
The following function takes a string as input parameter and prints it on standard screen.
def printme(str):

"This prints a passed string into this function"

print str

return

Calling a Function
Defining a function only gives it a name, specifies the parameters that are to be included in the function and

structures the blocks of code.
Once the basic structure of a function is finalized, you can execute it by calling it from another function or directly

from the Python prompt. Following is the example to call printme() function —
#!/usr/bin/python
Function definition is here

def printme(str):
"This prints a passed string into this function"
print str
return;
Now you can call printme function
printme("I'm first call to user defined function!")

printme("Again second call to the same function")

When the above code is executed, it produces the following result -

I'm first call to user defined function!

Again second call to the same function

Subject :Python Programming

Subject Code:16MCA21

b) output:5

5a) A string is a sequence of characters.

A character is simply a symbol. For example, the English language has 26 characters.

This conversion of character to a number is called encoding, and the reverse process is decoding. ASCIl and
Unicode are some of the popular encoding used.

In Python, string is a sequence of Unicode character. Unicode was introduced to include every character in all
languages and bring uniformity in encoding.

For example -

varl = 'Hello World!'

var2 = "Python Programming"

Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including verbatim
NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes.
#!/usr/bin/python

para_str="""

[\n], or just a NEWLINE within

the variable assighment will also show up.

print para_str

b) String methods:

str.capitalize() Returns a copy of the string with the first letter capi-
talized and the rest lowercase

str.count(s) Returns the number of nonoverlapping occurrences
of s in the string

strendswith(end) Returns True ifT the string ends with the characters
in the end string—this is-case sensitive.

str.find(s) Returns the index of the first occurrence of s in the

string. or -1 if s doesn’t occur in the string—the first
character is at index 0. This is case sensitive.

str.find(s, beg) Returns the index of the first occurrence of s at or
alter index beg in the string. or -1 if s doesn’'t occur in
the string at or alter index beg—1the first character is
at index O. This is case sensitive.

str.find(s) Returns the index of the first occurrernce of s in the
siring. or -1 if s doesn’'t occur in the siring—1the first
character is at index O. This is case sensitive.

str.find(s, beg) Returns the index of the first occurrence of s at or
alter index beg in the string. or -1 if s doesn’t occur in
the siring at or after index beg—1the first character is
at index O. This is case sensitive.

str.find(s, beqg, end) Returns the index of the first occurrence of s between
indices beg (inclusive) and end (exclusive) in the string.
or -1 if s does not occur in the string between indices
beg and end—the first chjaracter is at index O. This is
case sensitive.

str.format{«expressions») Returns a string made by substituting for placeholder
rields in the sitring—each field is a pair of braces
(‘{" and '}") with an integer in between: the expression
arguments are numbered rom lerlt to right starting

6a) def binary_search_recursive(li, left, right, key):
while True:

Subject :Python Programming
Subject Code:16MCA21
if left > right:
return -1
mid = (left + right) / 2
if liimid] == key:
return mid
if lifmid] > key:
right=mid -1
else:
left =mid +1
return binary_search_recursive(li, left, right, key)

if _name__ =="_main__":
li=[1,2,3,4,5,6,8,9,10, 11, 12]
left=0
right = len(li)

for keyin [8,6,1, 12, 7]:
index = binary_search_recursive(li, left, right, key)
print key, index

b)i)4 ii)4 iii)5.5 iv)True
7a)n=3
For |in range(0,n):

For jin range(0,i+1):

Print(“*”,end=" ")
Print(“ “)
b)
ph=2
if ph<3:

print(ph,”is very acidic! Be careful”)
elif ph>3 and ph<7:

print(ph,”is acidic”)
8) a)docstring A docstring is a string literal that occurs as the first statement in a module, function, class, or
method definition. Such a docstring becomes the __doc__ special attribute of that object. All modules should
normally have docstrings, and all functions and classes exported by a module should also havedocstrings.
b) A module is a python file that (generally) has only defenitions of variables, functions, and classes. A Python
module is simply a Python source file, which can expose classes, functions and global variables. When imported
from another Python source file, the file name is treated as a namespace. A Python package is simply a directory
ofPython module(s)
A Python module is simply a Python source file, which can expose classes, functions and global variables.When
imported from another Python source file, the file name is treated as a namespace.A Python package is simply a
directory of Python module(s).

import mypackage.mymodule
or

from mypackage.mymodule import myclass

There are Many Ways to Import a Module #
Python provides at least three different ways to import modules. You can use the import statement,
the from statement, or the builtin__import__ function. (There are more contrived ways to do this too, but that’s
outside the scope for this small note.)
Anyway, here’s how these statements and functions work:
e import X imports the module X, and creates a reference to that module in the current namespace. Or in
other words, after you’ve run this statement, you can use X.name to refer to things defined in module X.

http://effbot.org/zone/import-confusion.htm#many-ways

Subject :Python Programming
Subject Code:16MCA21
e from X import * imports the module X, and creates references in the current namespace to
all public objects defined by that module (that is, everything that doesn’t have a name starting with “_").
Or in other words, after you’ve run this statement, you can simply use a plain nameto refer to things
defined in module X. But X itself is not defined, so X.name doesn’t work. And if name was already defined,
it is replaced by the new version. And if name in X is changed to point to some other object, your module
won’t notice.
e from Ximport a, b, c imports the module X, and creates references in the current namespace to the given
objects. Or in other words, you can now use a and b and c in your program.
e Finally, X=__import__(‘X’) works like import X, with the difference that you 1) pass the module name as
a string, and 2) explicitly assign it to a variable in your current namespace.
c)Methds with _ underscore:
Any method (or other name) beginning and ending with two underscores is

considered special by Python. The help documentation for strings shows these
methods, among many others:

Methods defined here:

add__(...)
X._ _add___(y) =<==> x+y

|
|
I —
|
These methods are typically connected with some other syntax in Python:
use of that syntax will trigger a method call. For example, string method _ add__
is called when anything is added to a string:

>>> "TTA" + 'GGG’

'"TTAGGG'

>>> "TTA'.__ _add__ ("'GGG")

'"TTAGGG'

The documentation describes when these are called. Here we show both versionsof getting the absolute value of a
number:

>>> abs(-3)

3

>>>-3._ abs_ ()
3

We need to put a space after -3 in the second instance (with the underscores)so that Python doesn’t think we’re
making a floating-point number -3.(remember that we can leave off the trailing 0).

Let’s add two integers using this trick:

>>>3+5

8

>>>3.__add__(5)

8

	Flow Diagram
	The elif Statement
	syntax
	b)output:
	able
	ble
	le
	e
	4a) A function is a block of organized, reusable code that is used to perform a single, related action. Functions provide better modularity for your application and a high degree of code reusing.

	Defining a Function
	Syntax
	Example
	Calling a Function
	There are Many Ways to Import a Module #

