CMR INSTITUTE OF TECHNOLOGY

Internal Assesment Test - II

				13363116111 1				1		_				
Sub:	Analysis and Des	ign of Algo	rithms					Cod	le:	13	MCA4	1		
Date:	08 / 05 / 2017	Duration:	90 mins	Max Marks:	50	Sem :	III	Bra :	nch	M	CA			
		Ar	swer Any	y FIVE FULL	Questio	ns								
									AA	مدا	OB	3E		
									Mar	'KS	CO	RBT		
		s of Horspotching DEA ING". - 4M ps - 3M thm is use orce string ter every r which is a attern the mo C's in the po mo C's i	d for sti matching matching nismatch shift ta following attern, shift of character scurrence of	ring matching matching matching matching matching ma this however this however the maintaining four cases of the pattern by the pattern of c in th	g and poting the er, is deed. What is coccurate to the entire ern but the ern	erforme larg lone at ile ma	ns be est t the tching to right	cost g a nt.			CO3	L3		

```
Case 4: If C happens to be the last character in the pattern and there are other C's
among its first n-1 characters the shift in same as case 2.
           S<sub>0</sub>......S<sub>n-1</sub>
                     \mathcal{H}_{\parallel}
                REORD E R
                    RE O R DER
      Input enhancement makes repetitive comparisons unnecessary. Shift sizes are
precomputed and stored in a table. The shift value is calculated by the formula:
               the pattern's length m,
                if c is not among the first m-1 characters of the pattern
      t(c)=
             the distance from the rightmost c among the 1st m-1 characters of

    the pattern to its last character, otherwise

 Algorithm Shifttable(p[0..m-1])
 // Fills the table by Horspool's & Boya-Moore
 // Input: pattern p[0..m-1] and an alphabet of possible characters
 // Output: Table[0..size-1] indexed by the alphabet's characters and filled with shift
            sizes computed using t(c)
 initialize all the elements of Table with m.
 for j \leftarrow 0 to n-1 do Table[p[j]] \leftarrow m-1-j.
       return table.
Algorithm HorspoolMatching(P[0..m-1], T[0..n-1])
// Input: Pattern P[0..m-1] and text T[0..n-1]
// Output: The index of the left end of the first matching substring or -1 if there a
            no matches
shift table(P[0..m-1]) // generates table of shifts
i←m-1
                      // position of the pattern's right end
while i≤n-1 do
       k←0
                      // number of matched characters
       while i≤m-1 and P[m-1-k]=T[i-k]
       if k=m
             return i-m+1
       else i←i+Table[T[i]]
return -1.
To search for the pattern DEMO in the text THIS IS A DEMO FOR
STRING MATCHING, we first find the shift table for DEMO
Here n(length of string)=34 and m=4
Calculating the shift only for the first 3 characters:
Shift for D = m - 1 - I = 4-1-0=3
Shift for F = 4-1-1=2
Shift for M = 4-1-2=1
For all characters the shift table will have entries 4.
```

	Th	us	th	e s	hift	+	abl	e i	S													
	Α			В		(С		D)		Е				М	Ν	0				
	4			4		4	4		3			2	2 4 1 4 4 4									
	-				he										<u> </u>							
	-	H]	_	_	I	>	1	١	D	E	M	0	-					ATC F				
	D	E /	N C) D	E /	14	\circ						+ +		_			y 4 posit shift by	_			
					- /	۷۱		\ F	M	\circ								y 2 posit				
									D		M	0		Match	Fo	und!!						
2 (a)	W	rito	e a	n a	laor	٠i+	hm	fo	or c		• • •						perfo	rmance.		[10]	<i>C</i> O3	L1
																,33,11,2				[10]		
			_						•						•			nple - 3 <i>1</i>				
			_	-			_						-					using ex				
			•											_		•		is to co				
																	=	Thus if				
									_					_				then we				
			•															occurs i				
		•												•		•		e of I,				
																		equency element				
				_					•									riginal a				
					_													.e. l+i.	•			
																		sible val				
																	-	s 0 thro				
			•								_					•		from <i>F</i> [C	_			
														•		•		iven bel				
	()		•	L-J	, .	•,	u			•••	• • •	o u	90.		٠.	1110 54	1110 10 9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••			
			Δla	ori	i+hn	1 0)ie	tni	hut	tio	n C	าแท	tina	(A[0.	n-	.11)						
		,	''g	011			713		<i>-</i>		110	Jun	11115) (/\[O.		-1)						
			//	Sai	rts	an	ar	ra	v													
	// Sorts an array // Input: A[0n-1] of integers between I & u (I≤u)																					
												_						sina ord	er			
	// Output: S[0n-1] of A's elements sorted in increasing order																					
		+	for	i (-0	to	u-l	de	D D	۲i٦	(-	0				// in	itialize	freque	ncie			
				•														frequer				
																		r distrib				
					-n-1					-		LJ	-,	-[]]		,,						
				. •	j					_	_											
					5[I					ΑГ	il											
					D[•			_												
			et	uri	_	L (•	-1	L U.	-												

S	itep1: Calcu	lating tl	ne fred	quencie	S					
1	2,22,12,34,	33,11,22	2,22,34	4,12.						
	he range is	_	_		U -1					
	lence findir 11 12	ig the ti	requen 22	icy of a	33	34	7			
	1 3	0	3	0	1	2	_			
	ı	ı	1	'	1	'	I			
S	Step 2: Now	finding	cumul	ative fi	requen	су				
	11 12		22		33	34				
	1 4	4	7	7	8	10				
	_		of the	original	array o	and inse	erting it in proper			
position in the	sorted array	y		B	[09]					
♠ 11_12	2 22.	, 33.3	4, 1	1	12	TT	TITI			
A[9]=12 [1]	4 4 7	7 8 1	01/	-	177					
1.15	1117	718	1011	11	12		34			
A[8]=34 1 3	16	78	9.1	11	12	1 2	2 34			
4CT]=22	1 15	1	9		12	1222	The second secon			
4567=22		7 9	9	11	12	22	22 34			
25/211	13 4 15	1/13	9	11	10	. 22	22 33 34			
0507233 - 0	3 4 5	710	8-	Til	112	22	22 33 34 34			
A 127-34 0	3 4 5		N	1	1	11	22 33 34 34			
103212	2814 3	7.7	18	111	12/12	1 1				
· 67 02 10	2 4 5	1.7	18	111	12 12	22 22	22 33 34 3			
A[]= 22 0	1244	7 -	18	111	2 12 12	22 22	22 33 34 34			
3(a) Miles							ttal	[10]	CO 1	1.2
3 (a) Write pseudo co					mic pi	rogran	nming algorithm	[10]	CO4,	L2
To The khapsaci	k pi obieiii	una un	laryse	. II.					COI	
Sol: Pseudocode	- 5M, Ex	planat	ion -	2M, A	nalysi	s - 3N	١			
		-			-		ights w1,,w n and			
			acity /	M, find	the mo	st valu	able subset of the			
items that fit into										
			•				nsider an instance			
•				_			values v1,,vi, and			
							nal solution to this items that fit into			
							ms belong to two			
-							rs in which the ith			
item is not presen	t.									
					e the i	th iten	n, the value of an			
	subset is, b	•			od e					
							ible only when ,j >=			
	•		•				optimal subset of apacity j -wi. The			
l l	such an op						apacity j -wi. The			
Thus the recursive			2001 13	(1	-/J W1/	,.				
<u> </u>										

```
F(i, j) = \begin{cases} \max\{F(i-1, j), v_i + F(i-1, j-w_i)\} & \text{if } j - w_i \ge 0, \\ F(i-1, j) & \text{if } j - w_i < 0. \end{cases}
       If i=0 or j=0 then F(I,j)=0 since it means no objects and no capacity respectively.
       The recursive function above can be solved in a bottom up manner by solving the
       smallest of subprogblems first before solving the bigger ones. The algorithm for
       Knapsack is given below:
        The recursive function above can be solved in a bottom up manner by solving the
        smallest of subprogblems first before solving the bigger ones. The algorithm for
        Knapsack is given below:
        Algorithm Knapsack(n,w,c, M)
        // n- number of items
        // w- array containing weights of items from 0.. n-1
        // c- array containing costs of items from 0.. n-1
        // M - total capacity of knapsack
           Create a matrix F[0..n,0.. M]
          // initializing the matrix
         For I <- 0 to n
             F[i][0] \leftarrow 0
         For j <- 0 to M
             F[0][j] \leftarrow 0
        For i← 1 to n
            For j \leftarrow 1 to M
                 F[i][j] \leftarrow F[i-1][j];
                 If j \ge w[i] and c[i] + F[i-1][j-w[i]] > F[i-1][j]
                       F[i][j] \leftarrow c[i] + F[i-1][j-w[i]]
          }
        Return F[n][M]
       Analysis:
       The first two loops in the algorithm take \Theta(n) and \Theta(M) respectively. The third
       nested loop has the outer loop running n times and the inner loop running M times
       for a total of \Theta(nM) which is the complexity of the algorithm.
4 (a)
       Find the transitive closure of the graph given below using
                                                                                                   [6]
                                                                                                          CO2
                                                                                                                  L3
        Warshall's algorithm
        Sol: Steps (4Matrices) - 4 \times 1.5 = 6M
       The diagram below shows the working of Warshall's on a given graph
```


retrieved from the table; otherwise, it is computed by the recursive call whose result is then recorded in the table.

For the following instance of knapsack problem:

	value	weight	item	
	\$12	2	1	
capacity $W = 5$.	\$10	1	2	
	\$20	3	3	
	\$15	2	4	

Only a few entries need to be calculated in the table constructed using the top down approach as shown below:

		capacity j								
	i	0	1	2	3	4	5			
	0	0	0	0	0	0	0			
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12			
$w_2 = 1, v_2 = 10$	2	0	_	12	22	_	22			
$w_3 = 3, v_3 = 20$	3	0	_	_	22	_	32			
$w_4 = 2, v_4 = 15$	4	0	_	_	_	_	37			

Except for the base case the entire table is filled with nulls. We start by trying to calculate F(4,5) which requires F(3,3) and F(3,5). We store a null in all entries. Whenever an entry needs to be calculated we check if it already has a value. If yes we use the value, else we recursively compute it.

5 (a) Write and explain the Floyd's algorithm for finding the All pairs [10] CO1, L2,L shortest path and analyze its time complexity. Explain it with example.

Sol: Explanation of Floyd's algorithm-5M. Analysis - 2M, Example -4M

Sol: Given a weighted connected graph (undirected or directed), the *all-pairs* shortest paths

problem asks to find the distances—i.e., the lengths of the shortest paths from each vertex to all other vertices. This problem has a wide variety of applications in communication, transportation etc.

It is convenient to record the lengths of shortest paths in an $n \times n$ matrix D called the **distance matrix**: the element dij in the ith row and the jth column of this matrix indicates the length of the shortest path from the ith vertex to the jth vertex.

Floyd's algorithm computes the distance matrix of a weighted graph with n vertices through a series of $n \times n$ matrices:

$$D^{(0)}, \ldots, D^{(k-1)}, D^{(k)}, \ldots, D^{(n)}$$

The element d_{ij}^k in the ith row and the jth column of matrix $D^{(k)}$ (i, j = 1, 2, ..., n, k = 0, 1, ..., n) is equal to the length of the shortest path among all paths from the ith vertex to the jth vertex with each intermediate vertex, if any, numbered not higher than k. The series starts with $D^{(0)}$, which does not allow any intermediate vertices in its paths; hence, $D^{(0)}$ is simply the weight matrix of the graph. The last matrix in the series, $D^{(n)}$, contains the lengths of the shortest paths among all paths that can use all n vertices as intermediate and hence is nothing other than the distance matrix being sought. Let d_{ij}^k be the element in the ith row and the jth column of matrix $D^{(k)}$. We can partition all paths between I and j into two disjoint subsets: those that do not use the kth vertex v_k as intermediate and those that do. Since the paths of the first subset have their intermediate vertices numbered not higher than k - 1, the shortest of them is of length d_{ij}^{k-1} .

Now if we introduce the kth vertex as an intermediate vertex, then it is possible that the path from vi to vj through vk may be shorter than the already existing shortest path. In such a case a new shortest path through k has been discovered and this may be recorded. However if the new path has a cost higher than an already existing path, this may be ignored. This can be expressed through the recursion:

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, \ d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \quad \text{for } k \ge 1, \ d_{ij}^{(0)} = w_{ij}.$$

Dynamic programming solution for the problem can be expressed as :

```
ALGORITHM Floyd(W[1..n, 1..n])
```

```
//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths D \leftarrow W //is not necessary if W can be overwritten for k \leftarrow 1 to n do for i \leftarrow 1 to n do for j \leftarrow 1 to n do D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\} return D
```

Analysis:

The basic operation in this case is the statement inside the innermost loop. Writing the number of times the basic operation is executed in terms of summation.

$$T(n) = \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} 1 \models \sum_{k=1}^{n} \sum_{i=1}^{n} n = \sum_{k=1}^{n} n * n = n \times n \times n = n^{3}$$

$$T(n) = \Theta(n^{3})$$

Consider a graph whose adjacency matrix is given below:

6032∞			
∞ ∞ 0 4 ∞			
∞ ∞ 2 0 3			
3 ∞ ∞ ∞ 0			
We start with D^0 initialized to the weight matrix. In general the matrix D^k will be a nxn matrix with $D^k_{ij}=d^k_{ij}$. Lengths of shortest path with no intermediate.	:		
d & 2 0 3 vertices. (D is equal to weight matrix).			
Length of shortest path. 1			
D= a 0 2 5 1 8 height of chartest path with. b 6 0 3 2 14 intermediate vertices not more	.000		
eL3 5 & 4 0 discovered).			
0 ⁴ = a b c d e Length of shortest path with b 6. 0 3 2 5 intermediate vertices not more than 4 (. new edges shortest path d a a 2 0 3 were added from a to c, a to e, et 3 5 6 4. 01 b to e, c to e and e to c.	-		
D ⁵ 2 a 0 2 3 1 4. Intermediate vertices not more c 10 12 0 4 7 than 5 (ie: all vertices). d 6 8 2 0 3 (shortest paths added from c 2 3 5 6 4 0. Cto a, Cto b, d to a and d tob)			
6 (a) Explain the Dijkstra's single source shortest path algorithms and analyze its time complexity.	[10]	CO3	L1
Sol: Explanation - 3M, Algorithm - 4M, Analysis - 3M Sol: Dijkstra's algorithm is an algorithm for solving the single-source shortest-paths problem: for a given vertex called the source in weighted connected graph with non negative edges, find shortes paths to all its other vertices. Some of the applications of the	a t		
problem are transportation planning, packet routing in communication			
Page 9 of 16			

networks finding shortest paths in social networks, etc. First, it finds the shortest path from the source, to a vertex nearest to it, then to a second nearest, and so on. In general, before its ith iteration starts, the algorithm has already identified the shortest paths to i -1 other vertices nearest to the source. These vertices, the source, and the edges of the shortest paths leading to them from the source form a subtree Ti of the given graph. The set of vertices adjacent to the vertices in T called "fringe vertices"; are the candidates from which Dijkstra's algorithm selects the next vertex nearest to the source. To identify the ith nearest vertex, the algorithm computes, for every fringe vertex u, the sum of the distance to the nearest tree vertex v and the length dv of the shortest path from the source to v and then selects the vertex with the smallest such d value. d indicates the length of the shortest path from the source to that vertex till that point. We also associate a value p with each vertex which indicates the name of the next-to-last vertex on such a path, . After we have identified a vertex u* to be added to the tree, we need to perform

- Move u* from the fringe to the set of tree vertices.
- For each remaining fringe vertex u that is connected to u^* by an edge of weight $w(u^*, u)$ such that $d_{u^*} + w(u^*, u) < d_u$, update the labels of u by u^* and $d_{u^*} + w(u^*, u)$, respectively.

two operations.

The psuedocode for Dijkstra's is as given below:

```
ALGORITHM Dijkstra(G, s)
     //Dijkstra's algorithm for single-source shortest paths
     //Input: A weighted connected graph G = \langle V, E \rangle with nonnegative weights
               and its vertex s
    //Output: The length d_v of a shortest path from s to v
                 and its penultimate vertex p_v for every vertex v in V
     Initialize(Q) //initialize priority queue to empty
     for every vertex v in V
          d_v \leftarrow \infty; p_v \leftarrow \text{null}
      Insert(O, v, d_n) //initialize vertex priority in the priority queue d_s \leftarrow 0; Decrease(Q, s, d_s) //update priority of s with d_s
      for i \leftarrow 0 to |V| - 1 do
           u^* \leftarrow DeleteMin(Q) //delete the minimum priority element
            V_T \leftarrow V_T \cup \{u^*\}
            for every vertex u in V - V_T that is adjacent to u^* do
                 \mathbf{if} \, d_{u^*} + w(u^*, u) < d_u
                      d_u \leftarrow d_{u^*} + w(u^*, u); \quad p_u \leftarrow u^*
                      Decrease(Q, u, d_u)
```

Analysis:

The time efficiency of Dijkstra's algorithm depends on the data structures used for implementing the priority queue and for representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:
In loop for initialization takes time |V| since the insertion into the
queue would just involve appending the vertices at the end(since it is
an array implementation). For the second loop, the loop runs |V|

times. Each time the DeleteMin operation would take a maximum of $\Theta(|V|)$ time since it would involve finding the vertex in the array with min d value, for a total time of |V|2. The for loop (for jupdating the neighbor vetices) would run |V| times again. However the Decrease would take $\theta(1)$ time because the index of the vertex would be known. Thus the total time complexity is $\theta(|V|2)$. Graph represented by adjacency list and priority queue by binary heap: All heap operations take $\Theta(|q|V|)$ time. Thus the first loop runs |V|times and each time the Insert would take $\theta(|q|V|)$ time. The second loop runs |V| times and the DeleteMin would again take |q|V| time. Thus the total number of time DecreaseMin would run across all iterations is $\Theta(V|q|V|)$. In the second loop the basic operation is Decrease(Q,u,du) whoch is run the maximum number of times. Across all iterations using adjacency list, since for each vertex Decrease is called for a maximum of all its adjacent vertices, the number of times Decrease is invoked |E| times. For each time it is onvoked , it takes O(lg|V|) time to execute. Thus the total time complexity is $\Theta((|E|+|V|)|q|V|)$. Graph represented by adjacency list and priority queue by fibonacci heap: The time taken in this case $\Theta(|E|+|V||g|V|)$. 7 (a) Outline Prim's algorithm for finding the minimal spanning tree of a [10] CO2 L2,L graph. Analyze its time complexity. 3 Sol: Explanation - 3M, Algorithm - 4M, Analysis - 3M Prim's algorithm is used for solving the minimal spanning tree problem. Spanning tree of an undirected connected graph is its connected acyclic subgraph(tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a *minimum spanning* tree is its spanning tree of the smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree problem is the problem of finding a minimum spanning tree for a given weighted connected graph. Prim's algorithm constructs a minimum spanning tree through a sequence of expanding subtrees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from the set V of the graph's vertices. On each iteration, the algorithm expands the current tree in the greedy manner by simply attaching to it the nearest vertex(i.e. connected using the min weight) not in that tree. The algorithm stops after all the graph's vertices have been included in the tree being constructed. Since the algorithm expands a tree by exactly one vertex on each of its iterations, the total number of such

iterations is n-1, where n is the number of vertices in the graph.

ALGORITHM Prim(G) //Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \emptyset$ for $i \leftarrow 1$ to |V| - 1 do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u)such that v is in V_T and u is in $V - V_T$ $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$ return ET To implement Prim's algorithm we attach two labels to a vertex: the name of the nearest tree vertex and the length (the weight) of the corresponding edge. Vertices that are not adjacent to any of the tree vertices can be given the ∞ label indicating their "infinite" distance to the tree vertices and a null label for the name of the nearest tree vertex. With such labels, finding the next vertex to be added to the current tree T =(VT,ET) becomes a simple task of finding a vertex with the smallest distance label in the set V - VT. Afterwehave identified a vertex \mathbf{u}^\star to be added to the tree, we need to perform two operations: Analysis: Graph is represented by its weight matrix and the priority queue is implemented as an unordered array: The algorithm's running time will be in _(|V |2). Indeed, on each of the |*V*| - 1 iterations, the array implementing the priority queue is traversed to find and delete the minimum and then to update, if necessary, the priorities of the remaining vertices Graph is represented by its adjacency lists and the priority queue is implemented as a min-heap, the running time of the algorithm is in $O(|E| \log |V|)$. This is because the algorithm performs |V| - 1 deletions of the smallest element and makes |E| verifications and, possibly, changes of an element's priority in a min-heap of size not exceeding |V|. Each of these operations, as noted earlier, is a $O(\log |V|)$ operation. Hence, the running time of this implementation of Prim's algorithm is in (|V| - 1+ |E|)O(log |V |) = O(|E| log |V |) because, in a connected graph, |V| - 1≤ |E|. 8 (a) Explain Kruskal's method to find the minimal spanning tree. How is it CO6 1.4 [5] different from Prim's? Sol: Method - 3M, Difference (2 atleast) - 2M Kruskal's algorithm is used for solving the minimal spanning tree problem. Spanning tree of an undirected connected graph is its

The pseudocode of this algorithm is as follows.

connected acyclic subgraph(tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a *minimum* **spanning tree** is its spanning tree of the smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree problem is the problem of finding a minimum spanning tree for a given weighted connected graph. Kruskal's algorithm looks at a minimum spanning tree of a weighted connected graph G = (V, E) as an acyclic subgraph with |V| - 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not necessarily connected on the intermediate stages of the algorithm. The algorithm begins by sorting the graph's edges in nondecreasing order of their weights. Then, starting with the empty subgraph, it scans this sorted list, adding the next edge on the list to the current subgraph if such an inclusion does not create a cycle and simply skipping the edge otherwise. The differences between Prim;s and Kruskal's is: During intermediate stages of tree construction the partial structure in csae of Prim's is always a tree whereas in Kruskal's it may be a forest. Prim's algorithm is more appropriate when the |E| >> |V| else Kruskal's is more suitable. • In Prim's the next edge chosen is the minimum edge connecting a tree vertex with a vertex which is not in the tree whereas in Kruskal's the next chosen is the one with the minimum cost which does not cause a cycle. (b) Apply Kruskal's algorithm to find minimum cost spanning tree for the *CO*3 L3 graph. Sol: Steps - 4M, Final Solution - 1M

				1					
	Course Outcomes		P02	PO3	P04	PO5	P06	PO7	PO8
CO1:	Categorize problems based on their characteristics and practical importance.	4	2	1	0	0	2	2	0
CO2:	Understand the basic asymptotic notations and various efficiency classes.	4	3	4	0	0	0	3	0
CO3:	Compute the efficiency of algorithms in terms of asymptotic notations	2	4	1	0	0	0	1	0
CO4:	Design algorithm using an appropriate design paradigm for solving a given problem	4	3	4	0	0	0	3	0
CO5:	Classify problems as P, NP or NP Complete	2	4	1	0	0	2	1	0
CO6:	Implement algorithms using various design strategies and determine their order of growth.	3	3	4	0	0	1	2	0

PO1 – Apply knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 – team work; PO5 – Ethics; PO6 - Communication; PO7- Business Solution; PO8 – Life-long learning

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.