CMR

INSTITUTE OF USN
TECHNOLOGY

INSTITUTE OF
TECHNOLOGY

Internal Assesment Test — II Answer Key

Subject : System Software

Code : 16MCA25

Date : 10.05.2017 Duration : 90 mins Max Marks : 50 Sem : II Branch : MCA
OBE
Answer Any FIVE FULL Questions Marks CO RBT
1(a) |What are the Basic Functions of Loader? [4] | cO3 | L1

A loader is a system program that performs the loading function. The most

fundamental function of loader is to brings object program into memory and starts its

execution.

Y

2)

Design of Absolute Loader:

The operation of absolute loader is very simple. The object code is loaded to
specified locations in the memory. At the end the loader jumps to the
specified address to begin execution of the loaded program. The role of
absolute loader The advantage of absolute loader is simple and efficient. But
the disadvantages are, the need for programmer to specify the actual address,
and, difficult to use subroutine libraries.

Begin

read Header record

verify program name and length

read first Text record

while record type is <> ‘E’ do

begin

{if object code is in character form, convert into internal representation}
move object code to specified location in memory
read next object program record

end

jump to address specified in End record

end

Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute
loader, called bootstrap loader is executed. This bootstrap loads the first
program to be run by the computer -- usually an operating system. The
bootstrap itself begins at address 0. It loads the OS starting address 0x80. No
header record or control information, the object code is consecutive bytes of
memory.

(b) |Explain relocation with the Bit Mask. [6] | CO3 | L2
[f a machine primarily uses direct addressing and has a fixed instruction format, it is
often more efficient to specify relocation using relocation bit
Each instruction is associated with one relocation bit. It Indicates that the
corresponding word should be modified or not.

0: no modification is needed

1: modification is needed

This is specified in the columns 10-12 of text record (T), the format of text record,
along with relocation bits is as follows.

Text record:

col 1: T

col 2-7: starting address

col 8-9: length (byte)

col 10-12: relocation bits

col 13-72: object code

These relocation bits in a Text record are gathered into bit masks.

Twelve-bit mask is used in each Text record (col:10-12 — relocation bits), since each
text record contains less than 12 words, unused words are set to 0, and, any value that
is to be modified during relocation must coincide with one of these 3-byte segments.
E.g. FFC=111111111100

E00=111000000000

000000 00107A
TAO000000A1EAFFCA140033A481039A000036A280030A300015A...A3C0003
TAO00001EA15SAEO00A0C0036A481061A080033A4C0000A...A000003A000000
TA001039A1EAFFCA040030A000030A...A30103FAD8105DA280030A...
TA001057A0AA 800A100036 A4C0O000AF1A001000

TA001061 A19AFEOA040030AE01079A...A508039ADC1079A2C0036A...
EA000000

Write short note on [10] | CO3 | L1

i) Automatic Library Search

ii) Loader options

Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly
including them in the program to be loaded.

The routines are automatically retrieved from a library as they are needed during
linking.

This allows programmer to use subroutines from one or more libraries. The
subroutines called by the program being loaded are automatically fetched from the
library, linked with the main program and loaded.

The loader searches the library or libraries specified for routines that contain the
definitions of these symbols in the main program.

Loader Options

Loader options allow the user to specify options that modify the standard processing.
The options may be specified in three different ways. They are, specified using a
command language, specified as a part of job control language that is processed by
the operating system, and an be specified using loader control statements in the
source program. Here are the some examples of how option can be specified.
INCLUDE program-name (library-name) - read the designated object program from a
library DELETE csect-name — delete the named control section from the set pf
programs being loaded CHANGE namel, name2 - external symbol namel to be
changed to name2 wherever it appears in the object programs

LIBRARY MYLIB — search MYLIB library before standard libraries NOCALL STDDEYV,
PLOT, CORREL — no loading and linking of unneeded routines Here is one more
example giving, how commands can be specified as a part of object file, and the
respective changes are carried out by the loader.

LIBRARY UTLIB
INCLUDE READ (UTLIB)
INCLUDE WRITE (UTLIB)
DELETE RDREC,WRREC
CHANGE RDREC, READ

CHANGE WRREC, WRITE

NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE control
sections from the library, delete the control sections RDREC and WRREC from the
load, the change command causes all external references to the symbol RDREC to be
changed to the symbol READ, similarly references to WRREC is changed to WRITE,
finally, no call to the functions SQRT, PLOT, if they are used in the program.

Write the Algorithm for pass-1 and pass-2 of Linking Loader

Pass 1.

hagin
get PROCADDR from oweacaling systsm
szt CSBODR 1o FROGADDRE {for first contral sectiso}
while 0t =ad of Lnput do
badin
rend next input recurd {Header racord for oupoirol =ectiong
zet 517H Lo ceontrol section langlh
zgarch ESTAE o control s2:oticn nade
1f tpuod then
aet grror flag tduplicats sxteronl symbol:
alga
antear goalrel Zection name weto ESTAE with valee CHALDR
while rcoord Lyne () 'E" do
begin
raad nexl itpoet recerd
if racord Sypae = ‘07 then
for cack symbol in Lle record do
hegdin
sesran FETAS for symkol name
1t feuand them
sl crror flag {duplicats gxtorpal symeol)
elee
cnter gymbol ipto ESTAR sith wvalae
(LSALDR | indicated address:

and {‘orl
end {%iils (F 'E"}
add CALTH Lo CSADDE {starting sddrewss for next control sectlong
amd {whilc not EGF)
end |{Pzs5 1!

[10]

Co3

L2

Pass 2:

begin

sel CSADDE Lo PROGANDR

se< EXECAGDR to PROGALLR

while nat and of itnpat &0

begin

read next input resord {Harder racord!
el CSLTH 4o consrol sccstion length
while rocoed typs 43 'E’ ae

begin
re3d rext input record
if recard type — T them
bagin
fif okject code is 1n chavasler form, Goavert
intg intcrnal representationt
mova chject eode from record to Tocalicn
[C3ADDR ¢ specilied addeess)
end |1f "I}
elss If record type - "M them
hegin

search ESTAB tor modifylng =ymhol oame
1t found shen)
acd or subtract symbol walas ol lecatlion
- {COATDR + sponilied address]
alea :
set errar Plag [wndeficed sxternal symbkal]
end (I M
ana [xhile () 'E'}
Af an address is specitied [in End cecord} them
507 EXECADCR to {CHADDR | spacified address)
add CS0TH ta CEADDR
end {while nat EOF} . .)
sump to loeation_giver by EXECATIR {io start exsontion ol puded progril

4(a)

Discuss Macro Definition and Expansion with suitable Example

Macro Definition and Expansion: The figure shows the MACRO expansion. The left

block shows the MACRO definition and the right block shows the expanded macro
replacing the MACRO call with its block of executable instruction.

M1 is a macro with two parameters D1 and D2. The MACRO stores the contents of
register A in D1 and the contents of register B in D2. Later M1 is invoked with the
parameters DATA1 and DATA2, Second time with DATA4 and DATA3. Every call of
MACRO is expended with the executable statements.

Source Expanded source
M1 MACRO &D1, &D2
STA &D1
STB &D2 :
MEND STA DATA1
STB DATA2

M1 DATA1, DATAZ

. STA DATA4
M1 DATA4, DATA3 STB DATA3

(5]

COo3

L1

The statement M1 DATA1, DATA2 is a macro invocation statements that gives the
name of the macro instruction being invoked and the arguments (M1 and M2) to be
used in expanding. A macro invocation is referred as a Macro Call or Invocation.

The program with macros is supplied to the macro processor. Each macro
invocation statement will be expanded into the statement s that form the body of
the macro, with the arguments from the macro invocation substituted for the
parameters in the macro prototype. During the expansion, the macro definition
statements are deleted since they are no longer needed. The arguments and the
parameters are associated with one another according to their positions. The first
argument in the macro matches with the first parameter in the macro prototype
and so on.

(b)

Describe MASM Macro Processor

MASM

The macro processor of MASM is integrated with Pass 1 of the assembler
MASM generates the unique names of local labels in the form ??n, where nis a
hexadecimal number in the range 0000 to FFFF

.ERR: signals to MASM that an error has been detected

EXITM: directs MASM to terminate the expansion of the macro

&: is a concatenation operator

;; is @ macro comment, serves only as documentation for the macro definition

; is an ordinary assembler language comment, included as part of the macro
expansion

IRP: sets the macro-time variable to a sequence of values specified in <...>

The statements between the TRP and the matching ENDM are generated once for

each value of the variable

(5]

COo3

L1

Explain the different data structures used by Macro Processor
The data structures required are:
DEFTAB (Definition Table)
e Stores the macro definition including macro prototype and macro body
e Comment lines are omitted.
e References to the macro instruction parameters are converted to a positional

notation for efficiency in substituting arguments.

[10]

co3

L2

NAMTAB (Name Table)

e Stores macro names

e Serves as an index to DEFTAB

¢ Pointers to the beginning and the end of the macro definition (DEFTAB)

ARGTAB (Argument Table)

e Stores the arguments according to their positions in the argument list.

e As the macro is expanded the arguments from the Argument table are
substituted for the corresponding parameters in the macro body.

e The figure below shows the different data structures described and their
relationship.

Explain the Following :
i) Generation of unique labels
ii) Concatenation of Macro Parameters

Generation of Unique Labels

e Itis not possible to use labels for the instructions in the macro definition,
since every expansion of macro would include the label repeatedly which
is not allowed by the assembler.

e This in turn forces us to use relative addressing in the jump instructions.
Instead we can use the technique of generating unique labels for every
macro invocation and expansion.

e During macro expansion each $ will be replaced with $XX, where xx is a
two-character alphanumeric counter of the number of macro instructions
expansion. For example,

o XX =AA, AB, AC... This allows 1296 macro expansions in a single
program.

Concatenation of Macro Parameters

There are applications of macro processors that are not related to assemblers or
assembler programming.
Conditional assembly depends on parameters provides
MACRO &COND
IF (&COND NE ,,”)
part I
ELSE
part IT
ENDIF

Part I is expanded if condition part is true, otherwise part II is expanded. Compare
operators: NE, EQ, LE, GT.

Macro-Time Variables:

[10]

COo3

L2

Macro-time variables (often called as SET Symbol) can be used to store working
values during the macro expansion. Any symbol that begins with symbol & and
not a macro instruction parameter is considered as macro-time variable. All such
variables are initialized to zero.
If the value of this expression TRUE,
e The macro processor continues to process lines from the DEFTAB until it
encounters the ELSE or ENDIF statement.
e If an ELSE is found, macro processor skips lines in DEFTAB until the
next ENDIF.
e Once it reaches ENDIF, it resumes expanding the macro in the usual way.
If the value of the expression is FALSE,
e The macro processor skips ahead in DEFTAB until it encounters next
ELSE or ENDIF statement.
e The macro processor then resumes normal macro expansion.

WHILE-ENDW structure

e When an WHILE statement is encountered during the expansion of a
macro, the specified Boolean expression is evaluated.

e TRUE -The macro processor continues to process lines from DEFTAB
until it encounters the next ENDW statement.

e When ENDW is encountered, the macro processor returns to the preceding
WHILE, re-evaluates the Boolean expression, and takes action based on
the new value.

e FALSE - The macro processor skips ahead in DEFTAB until it finds the
next ENDW statement and then resumes normal macro expansion.

7(a)

Write short note on

i) Linkage Editor
The figure below shows the processing of an object program using Linkage
editor. A linkage editor produces a linked version of the program — often
called a load module or an executable image — which is written to a file or
library for later execution.
The linked program produced is generally in a form that is suitable for
processing by a relocating loader. Some useful functions of Linkage editor
are, an absolute object program can be created, if starting address is already
known.
New versions of the library can be included without changing the source
program. Linkage editors can also be used to build packages of subroutines or|
other control sections that are generally used together.
Linkage editors often allow the user to specify that external references are
not to be resolved by automatic library search — linking will be done later by
linking loader — linkage editor + linking loader — savings in space

ii) Bootstrap Loader
When a computer is first turned on or restarted, a special type of absolute
loader, called bootstrap loader is executed. This bootstrap loads the first
program to be run by the computer -- usually an operating system. The
bootstrap itself begins at address 0. It loads the OS starting address 0x80. No
header record or control information, the object code is consecutive bytes of
memory.

The algorithm for the bootstrap loader is as follows

(8]

Cco4

L1

Begin
X=0x80 (the address of the next memory location to be loaded
Loop
A«—GETC (and convert it from the ASCII character code to the value of]
the hexadecimal digit) save the value in the high-order 4 bits of S
A«—GETC combine the value to form one byte A« (A+S) store the
value (in A) to the address in register X

X—X+1
End
(b) What is Recursive-Descent Parsing [2] | co4 | L1
Recursive-Descent parsing is a top down parsing method.
For each non-terminal, there is a procedure which
Begins from the current token, search the following tokens, and try to recognize the
rule associated with the non-terminal.
May call other procedures or even itself for non-terminals included in the rule of
this non-terminal.
When a match is recognized, the procedure returns an indication of success,
otherwise, error.
8(a) [Consider the following finite automata and check whether the following strings are| [4] | CO4 | L3
recognized or not
iJabc i) abccabc ii)ac iv)abcabc v)abcac
a
~(o—CO—CD
< C
iJabc - Recognized
ii) abccabc - Recognized
ii)ac - Not Recognized
iv)Jabcabc - Recognized
v)abcac- - Not Recognized
(b) (Construct Parsing Tree for following PASCAL statement [4] | cO4 | L3

<assign> :: = id : = <exp>

()

1)

2)

3)

What are the Basic Functions of complier?

Basic functions of Compiler are Scanning, parsing, and (object) code generation.

Lexical analysis
Scan the program to be compiled and recognize the tokens (from string of

characters).

Syntactic analysis
The source statements written by programmers are recognized as language
constructs described by the grammar. This process is achieved by building

the parse tree for the statements being translated.

Code Generation
Most compilers create machine-language programs directly instead of

producing a symbolic program for later translation by an assembler.

(2]

co4

L1

