
CMR

INSTITUTE OF USN
TECHNOLOGY

Internal Assessment Test 2– May 2017

 Answer any five of the following. 5x10=50M

1. Explain in detail, how to use java bean in JSP documents.

 been designed to be reusable in variety of
different envi ronments.

such as spelling check of a document, or a complex function such as forecasting the
performance of a stock portfolio.

information in a real time)
rkstation or to work in

cooperation with a set of other distributed components.

understand their inner workings.

nderstand why software components are useful, think of a worker assembling a car. Instead of
building a radio from scratch, for example, she simply obtains a radio and hooks it up with the rest of
the car.
 A Java Bean is a java class that should follow following conventions:
It should have a no-arg constructor.
It should be Serializable.
It should provide methods to set and get the values of the properties, known as getter and setter
methods.
According to Java white paper, it is a reusable software component. A bean encapsulates many objects
into one object, so we can access this object from multiple places. Moreover, it provides the easy
maintenance
Ex:
package mypack;
public class Employee implements java.io.Serializable{
private int id;
private String name;

public Employee(){}
public void setId(int id){this.id=id;}
public int getId(){return id;}
public void setName(String name){this.name=name;}
public String getName(){return name;}
 }
To access the java bean class, we should use getter and setter methods.
package mypack;
public class Test{
public static void main(String args[]){
Employee e=new Employee();//object is created
e.setName("Arjun");//setting value to the object

Sub: Advanced Java Programming Code: 13MCA 42

Date: 08.05.2017 Duration: 90 mins Max Marks: 50 Sem: 4 Branch: MCA

System.out.println(e.getName());
}}

2.a. Explain the different type of JDBC drivers
 JDBC driver specification classifies JDBC drivers into four groups.
 They are…
 Type 1: JDBC-to-ODBC Driver
 Microsoft created ODBC (Open Database Connection), which is the basis from which
Sun created JDBC. Both have similar driver specifications and an API.
 The JDBC-to-ODBC driver, also called the JDBC/ODBC Bridge, is used to translate
DBMS calls between the JDBC specification and the ODBC specification.
 MS Access and SQL Server contains ODBC driver written in C language using pointers,
but java does not support the mechanism to handle pointers.
 So JDBC-ODBC Driver is created as a bridge between the two so that JDBC-ODBC
bridge driver translates the JDBC API to the ODBC API.

 Type-1 ODBC Driver for MS Access and SQL Server

Drawbacks of Type-I Driver:

o ODBC binary code must be loaded on each client.
o Transaction overhead between JDBC and ODBC.
o It doesn‟t support all features of Java.
o It works only under Microsoft, SUN operating systems.

Type 2: Java/Native Code Driver or Native-API Partly Java Driver
 It converts JDBC calls into calls on client API for DBMS.
 The driver directly communicates with database servers and therefore some database
client software must be loaded on each client machine and limiting its usefulness for
internet
 The Java/Native Code driver uses Java classes to generate platform- specific code that is
code only understood by a specific DBMS.

Ex: Driver for DB2, Informix, Intersoly, Oracle Driver, WebLogic drivers

Drawbacks of Type-I Driver:
o Some database client software must be loaded on each client machine
o Loss of some portability of code.
o Limited functionality
o The API classes for the Java/Native Code driver probably won‟t work with
another manufacturer‟s DBMS.
Type 3: Net-Protocol All-Java Driver
 It is completely implemented in java, hence it is called pure java driver. It translates the
JDBC calls into vendor‟s specific protocol which is translated into DBMS protocol by a
middleware server
 Also referred to as the Java Protocol, most commonly used JDBC driver.
 The Type 3 JDBC driver converts SQL queries into JDBC- formatted statements, in-turn
they are translated into the format required by the DBMS.

Ex: Symantec DB

Drawbacks:
 It does not support all network protocols.
 Every time the net driver is based on other network protocols.

Type 4: Native-Protocol All-Java Driver or Pure Java Driver

 Type 4 JDBC driver is also known as the Type 4 database protocol.
 The driver is similar to Type 3 JDBC driver except SQL queries are translated into the
format required by the DBMS.
 SQL queries do not need to be converted to JDBC-formatted systems.
 This is the fastest way to communicated SQL queries to the DBMS.
 Here the driver uses network protocol this protocol is already built-into the database
engine; here the driver talks directly to the database using java sockets. This driver is
better than all other drivers, because this driver supports all network protocols.
 Use Java networking libraries to talk directly to database engines

Ex: Oracle, MYSQL

Only disadvantage: need to download a new driver for each database engine

b. Explain about Batch Updates with example

Batch Processing allows you to group related SQL statements into a batch and submit them with one
call to the database.
When you send several SQL statements to the database at once, you reduce the amount of
communication overhead, thereby improving performance.
JDBC drivers are not required to support this feature. You should use the Database MetaData.supports
BatchUpdates() method to determine if the target database supports batch update processing. The
method returns true if your JDBC driver supports this feature.
The addBatch() method of Statement, PreparedStatement, and CallableStatement is used to add
individual statements to the batch. The executeBatch() is used to start the execution of all the statements
grouped together.
The executeBatch() returns an array of integers, and each element of the array represents the update
count for the respective update statement.
Just as you can add statements to a batch for processing, you can remove them with
the clearBatch() method. This method removes all the statements you added with the addBatch()
method. However, you cannot selectively choose which statement to remove.
Here is a typical sequence of steps to use Batch Processing with Statement Object −
Create a Statement object using either createStatement() methods.
Set auto-commit to false using setAutoCommit().
Add as many as SQL statements you like into batch using addBatch() method on created statement
object.
Execute all the SQL statements using executeBatch() method on created statement object.
Finally, commit all the changes using commit() method.

EX:

// Create statement object

Statement stmt = conn.createStatement();

// Set auto-commit to false

conn.setAutoCommit(false);

// Create SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(200,'Zia', 'Ali', 30)";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create one more SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(201,'Raj', 'Kumar', 35)";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create one more SQL statement

String SQL = "UPDATE Employees SET age = 35 " +

 "WHERE id = 100";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create an int[] to hold returned values

int[] count = stmt.executeBatch();

//Explicitly commit statements to apply changes

conn.commit();

3.a. Write the short note about Prepared statement

Ex: Select * from publishers where pub_id=?

that is inserted into the query after the query is compiled.

PreparedStatement object.

Ex:
PreparedStatement stat;
stat= con.prepareStatement(“select * from publisher where pub_id=?”)

//Program using preparedstatement
import java.sql.*;

public class JdbcDemo {
 public static void main(String args[]){
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con=DriverManager.getConnection("jdbc:odbc:MyDataSource","khutub","");
 PreparedStatement pstmt;
 pstmt= con.prepareStatement("select * from employee whereUserName=?");

 pstmt.setString(1,"khutub");
 ResultSet rs1=pstmt.executeQuery();
 while(rs1.next()){
 System.out.println(rs1.getString(2));
 }
 } // end of try
 catch(Exception e){System.out.println("exception"); }
 } //end of main
 } // end of class

b.Write a JSP program to implement all the attributes of page directive

tag.

student.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Student Information System</title>
<h4>Enter the details</h4>
</head>
<body>
<form action="process.jsp" method="post">
<table boder=1>
<tr><td>Usn No.</td><td><input type="text" name="usn"/></td></tr>
<tr><td>Student Name</td><td><input type="text" name="name"/></td></tr>
<tr><td>Department</td><td><input type="text" name="dept"/></td></tr>
</table>
<input type="submit" value="Submit"/>
<input type="reset" value="Clear"/>
</form>
</body>
</center>
</html>

process.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Insert title here</title>
</head>
<body>
<% String name="",usn="",dept="";
usn=request.getParameter("usn");
name=request.getParameter("name");

dept=request.getParameter("dept");
out.println("<html><center><body bgcolor=grey>"); %>
<%@page errorPage="error.jsp" session="true" isThreadSafe="true" %>
<%synchronized(this)
{
wait(1000);
}
if(dept.equals("")||name.equals("")||usn.equals(""))
{
 throw new RuntimeException("FieldBlank");
}
else
{
 session.setAttribute("name",name);
 session.setAttribute("usn",usn);
session.setAttribute("dept",dept);
request.getRequestDispatcher("display.jsp").forward(request,response);
}
 %>
<%out.println("<body></center></html>");
 %>

</body>
</html>

error.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Insert title here</title>
</head>
<body>
<%@page isErrorPage="true"%>
<%=exception %>
</body>
</html>

display.jsp

<%@page import="java.util.*" session="true" contentType="text/html;"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Insert title here</title>
<h3 align="center"> Student information</h3>
<h4 align="right"><%= new Date() %></h4>

</head>
<center>
<body>
<table border=1 cellPadding=10 cellSpacing=10>
<tr>
<th>Name</th>
<th>USN</th>
<th>Dept</th>
</tr>
<tr>
<td><%=session.getAttribute("usn")%></td>
<td><%=session.getAttribute("name")%></td>
<td><%=session.getAttribute("dept")%></td>
</tr>
</table>
</body>
 Back to info
</center>
</html>

 4. Write a JAVA Program to insert data into Student DATA BASE and

retrieve info based on particular queries(For example update, delete, search
etc…).
package j2ee.p9;
import java.sql.*;
import java.io.*;

public class Studentdata {

 public static void main(String[] args) {
 Connection con;
 PreparedStatement pstmt;
 Statement stmt;
 ResultSet rs;
 String uname, pword;
 Integer marks,count;
 try
 {
 Class.forName("com.mysql.jdbc.Driver"); // type1 driver

 try{

 con=DriverManager.getConnection("jdbc:mysql://127.0.0.1/mca","root","system"); // type1
access connection
 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));
 do
 {

 System.out.println("\n1. Insert.\n2. Select.\n3. Update.\n4. Delete.\n5.
Exit.\nEnter your choice:");
 int choice=Integer.parseInt(br.readLine());
 switch(choice)

 {
 case 1: System.out.print("Enter UserName :");
 uname=br.readLine();
 System.out.print("Enter Password :");
 pword=br.readLine();
 pstmt=con.prepareStatement("insert into student
values(?,?)");
 pstmt.setString(1,uname);
 pstmt.setString(2,pword);
 pstmt.execute();
 System.out.println("\nRecord Inserted successfully.");
 break;
 case 2:
 stmt=con.createStatement();
 rs=stmt.executeQuery("select *from student");
 if(rs.next())
 {
 System.out.println("User Name\tPassword\n------------
--------------------");
 do
 {
 uname=rs.getString(1);
 pword=rs.getString(2);

 System.out.println(uname+"\t"+pword);
 }while(rs.next());
 }
 else
 System.out.println("Record(s) are not
available in database.");
 break;
 case 3:
 System.out.println("Enter User Name to
update :");
 uname=br.readLine();
 System.out.println("Enter new password :");
 pword=br.readLine();
 stmt=con.createStatement();
 count=stmt.executeUpdate("update student set
password='"+pword+"'where username='"+uname+"'");
 System.out.println("\n"+count+" Record
Updated.");
 break;
 case 4: System.out.println("Enter User Name to delete
record:");
 uname=br.readLine();
 stmt=con.createStatement();
 count=stmt.executeUpdate("delete from
student where username='"+uname+"'");

 if(count!=0)
 System.out.println("\nRecord
"+uname+" has deleted.");
 else

 System.out.println("\nInvalid USN,
Try again.");
 break;

 case 5: con.close(); System.exit(0);
 default: System.out.println("Invalid choice, Try
again.");
 }//close of switch
 }while(true);
 }//close of nested try
 catch(SQLException e2)
 {
 System.out.println(e2);
 }
 catch(IOException e3)
 {
 System.out.println(e3);
 }
 }//close of outer try
 catch(ClassNotFoundException e1)
 {
 System.out.println(e1);
 }
 }
}

5. Explain the container services provided by component model of EJB
1. Instance Pooling/Caching:
Because of the strict concurrency rules enforced by the Container, an intentional bottleneck is often
introduced where a service instance may not be available for processing until some other request has
completed. If the service was restricted to a singular instance, all subsequent requests would have to
queue up until their turn was reached
EJB addresses this problem through a technique called instance pooling, in which each module is
allocated some number of instances with which to serve incoming requests Many vendors provide
configuration options to allocate pool sizes appropriate to the work being performed, providing the
compromise needed to achieve optimal throughput.

2.Transactions

 Transactions provide a means for the developer to easily delegate the creation and control of
transactions to the container. When a bean calls createTimer(), the operation is performed in the scope
of the current transaction. If the transaction rolls back, the timer is undone and it’s not created The
timeout callback method on beans should have a transaction attribute of RequiresNew. This ensures
that the work performed by the callback method is in the scope of containerinitiated
3.Security:

 Most enterprise applications are designed to serve a large number of clients, and users are not
necessarily equal in terms of their access rights. An administrator might require hooks into the
configuration of the system, whereas unknown guests may be allowed a read-only view of data. If we
group users into categories with defined roles, we can then allow or restrict access to the role itself, as
illustrated in Figure 15-1.

This allows the application developer to explicitly allow or deny access at a fine-grained level based
upon the caller’s identity
4.Timers
We dealt exclusively with client-initiated requests. While this may handle the bulk of an application’s
requirements, it doesn’t account for scheduled jobs: • A ticket purchasing system must release
unclaimed tickets after some timeout of inactivity. • An auction house must end auctions on time. • A
cellular provider should close and mail statements each month. The EJB Timer Service may be
leveraged to trigger these events and has been enhanced in the 3.1 specification with a natural-language
expression syntax.

6. Write a short note about

a)Implementation class

The contract, implemented as interfaces in Java, defines what our service will do, and leaves it up to the
implementation classes to decide how it’s done. Remember that the same interface cannot be used for
both @Local and @Remote, so we’ll make some common base that may be extended.
public interface CalculatorCommonBusiness {
 /** * Adds all arguments * *
 @return The sum of all arguments */
int add(int... arguments);
 }
public class CalculatorBeanBase implements CalculatorCommonBusiness {
 /** *
 {
@link CalculatorCommonBusiness#
add(int...)
}
 */ @Override
 public int add(final int... arguments)
{ // Initialize int result = 0;
// Add all arguments for (final int arg : arguments)
{
result += arg;
}
// Return return result;
}

 }
This contains the required implementation of CalculatorCommonBusiness. add(int...). The bean
implementation class therefore has very little work to do.
 import javax.ejb.LocalBean;
 import javax.ejb.Stateless;
@Stateless
@LocalBean
public class SimpleCalculatorBean extends CalculatorBeanBase
 {
/* * Implementation supplied by common base class */
}
 The function of our bean implementation class here is to bring everything together and define the EJB
metadata. Compilation will embed two important bits into the resultant .class file. First, we have an
SLSB, as noted by the @Stateless annotation. And second, we’re exposing a no-interface view

 b) Integration Testing of EJB
There are three steps involved in performing integration testing upon an EJB.
First, we must package the sources and any descriptors into a standard Java Archive
Next, the resultant deployable must be placed into the container according to a vendor-specific
mechanism.
 Finally, we need a standalone client to obtain the proxy references from the Container and invoke upon
them.
Packaging

A standard jar tool that can be used to assemble classes, resources, and other metadata into a unified
JAR file, which will both compress and encapsulate its contents.
Deployment into the Container The EJB Specification intentionally leaves the issue of deployment up
to the vendor’s discretion.
The client

Instead of creating POJOs via the new operator, we’ll look up true EJB references via JNDI. JNDI is a
simple store from which we may request objects keyed to some known address.

7. What is session bean? Explain in detail about the types of session bean

Session Beans If EJB is a grammar, session beans are the verbs. Session beans contain business
methods. The client does not access the EJB directly, which allows the Container to perform all sorts
of magic before a request finally hits the target method. It’s this separation that allows for the client to
be completely unaware of the location of the server, concurrency policies, or queuing of requests to
manage resources.

Types of Session Bean
There are 3 types of session bean.
1) Stateless Session Bean: It doesn't maintain state of a client between multiple method calls.
2) Stateful Session Bean: It maintains state of a client across multiple requests.

 3) Singleton Session Bean: One instance per application, it is shared between clients and supports
concurrent access.
Stateless session beans (SLSBs) Stateless session beans are useful for functions in which state does
not need to be carried from invocation to invocation. The Container will often create and destroy
instances however it feels will be most efficient How a Container chooses the target instance is left to
the vendor’s discretion. Because there’s no rule linking an invocation to a particular target bean
instance, these instances may be used interchangeably and shared by many clients. This allows the
Container to hold a much smaller number of objects in service, hence keeping memory footprint down.

Stateful session beans (SFSBs) Stateful session beans differ from SLSBs in that every request upon a
given proxy reference is guaranteed to ultimately invoke upon the same bean instance. SFSB
invocations share conversational state. Each SFSB proxy object has an isolated session context, so
calls to one session will not affect another. Stateful sessions, and their corresponding bean instances,
are created sometime before the first invocation upon a proxy is made to its target instance (Figure 2-
3). They live until the client invokes a method that the bean provider has marked as a remove event, or
until the Container decides to remove the session

Singleton beans Sometimes we don’t need any more than one backing instance for our business
objects. All requests upon a singleton are destined for the same bean instance, The Container doesn’t
have much work to do in choosing the target (Figure 2-4). The singleton session bean may be marked
to eagerly load when an application is deployed; therefore, it may be leveraged to fire application
lifecycle events. This draws a relationship where deploying a singleton bean implicitly leads to the
invocation of its lifecycle callbacks. We’ll put this to good use when we discuss singleton beans.

