

CMR

INSTITUTE OF

TECHNOLOGY

USN 1 C

Internal Assessment Test 2 – May 2017

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

Marks

OBE

CO RBT

1 a. 1. Explain the different variables in Perl. Explain each with examples

There are three types of variables in Perl. A scalar variable will precede by a dollar

sign ($) and it can store either a number, a string, or a reference. An array variable

will precede by sign @ and it will store ordered lists of scalars. Finally,

the Hash variable will precede by sign % and will be used to store sets of key/value

pairs.

Perl maintains every variable type in a separate namespace. So you can, without fear

of conflict, use the same name for a scalar variable, an array, or a hash. This means

that $foo and @foo are two different variables. Perl variables do not have to be

explicitly declared to reserve memory space. The declaration happens automatically

when you assign a value to a variable. The equal sign (=) is used to assign values to

variables.

Scalar Variables

A scalar is a single unit of data. That data might be an integer number, floating
point, a character, a string, a paragraph, or an entire web page. Simply saying it
could be anything, but only a single thing.

#!/usr/bin/perl

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

Array Variables

An array is a variable that stores an ordered list of scalar values. Array
variables are preceded by an "at" (@) sign. To refer to a single element of an
array, you will use the dollar sign ($) with the variable name followed by the
index of the element in square brackets.

#!/usr/bin/perl

@ages = (25, 30, 40);

@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

[10] CO3 L4

Sub: Advanced Web Programming Code: 13MCA43

Date: 09-05-17 Duration: 90 mins
Max

Marks: 50
Sem: IV Branch: MCA

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

print "\$names[2] = $names[2]\n";

Hash Variables

A hash is a set of key/value pairs. Hash variables are preceded by a percent

(%) sign. To refer to a single element of a hash, you will use the hash variable

name followed by the "key" associated with the value in curly brackets.

Here is a simple example of using hash variables −

#!/usr/bin/perl

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";

print "\$data{'Lisa'} = $data{'Lisa'}\n";

print "\$data{'Kumar'} = $data{'Kumar'}\n";

This will produce the following result −

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

2 a. Explain the control structures in Perl with suitable examples

While

$a=0;

While($a<10) {
{
 Print $a;
 $a++;
}

Do-while

$a=0;
Do
{
Print $a;
$a++;
}
While($a<10);

For

For($a=0;$a<10;$a++)
{
 Print $a;
}

[10] CO3 L4

Foreach
@a = (“a”,”b”,”c”,10);
Foreach(@a as $k)
{
Print $k;
}

Until

 Unless

Next

Last

Nested loops

If

Elsif

3 a. Pattern Matching / Regular Expressions

You can write about the types as well. POSIX and PERL style

A regular expression is a string of characters that defines the pattern or
patterns you are viewing. The syntax of regular expressions in Perl is very
similar to what you will find within other regular expression supporting
programs.

The basic method for applying a regular expression is to use the pattern binding

operators =~ and !~. The first operator is a test and assignment operator.

There are three regular expression operators within Perl.

 Match Regular Expression - m//

 Substitute Regular Expression - s///

 Transliterate Regular Expression - tr///

The forward slashes in each case act as delimiters for the regular expression (regex)

that you are specifying. If you are comfortable with any other delimiter, then you can

use in place of forward slash.

The Match Operator

The match operator, m//, is used to match a string or statement to a regular

expression.

#!/usr/bin/perl

$bar = "This is foo and again foo";

if ($bar =~ /foo/){

 print "First time is matching\n";

}else{

 print "First time is not matching\n";

}

The m// actually works in the same fashion as the q// operator
series.you can use any combination of naturally matching characters to act as

[10] CO3 L4

delimiters for the expression

Regular Expression Variables

Regular expression variables include $, which contains whatever the last
grouping match matched; $&, which contains the entire matched string; $`,
which contains everything before the matched string; and $', which contains
everything after the matched string. Following code demonstrates the result −

#!/usr/bin/perl

$string = "The food is in the salad bar";

$string =~ m/foo/;

print "Before: $`\n";

print "Matched: $&\n";

print "After: $'\n";

The Substitution Operator

The substitution operator, s///, is really just an extension of the match

operator that allows you to replace the text matched with some new text. The

basic form of the operator is −

s/PATTERN/REPLACEMENT/;

The PATTERN is the regular expression for the text that we are looking for. The

REPLACEMENT is a specification for the text or regular expression that we want to

use to replace the found text with. For example, we can replace all occurrences

of dog with cat using the following regular expression −

#/user/bin/perl

$string = "The cat sat on the mat";

$string =~ s/cat/dog/;

print "$string\n";

When above program is executed, it produces the following result −

The dog sat on the mat

The Translation Operator

Translation is similar, but not identical, to the principles of substitution, but

unlike substitution, translation (or transliteration) does not use regular

expressions for its search on replacement values. The translation operators are

−

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

The translation replaces all occurrences of the characters in SEARCHLIST with

the corresponding characters in REPLACEMENTLIST. For example, using the

"The cat sat on the mat." string we have been using in this chapter −

#/usr/bin/perl

$string = 'The cat sat on the mat';

$string =~ tr/a/o/;

print "$string\n";

4 a. Subroutines

A Perl subroutine or function is a group of statements that together performs a
task. You can divide up your code into separate subroutines, logically the
division usually is so each function performs a specific task.

sub subroutine_name{

 body of the subroutine

}

The typical way of calling that Perl subroutine is as follows −

subroutine_name(list of arguments);

&subroutine_name(list of arguments);

#!/usr/bin/perl

Function definition

sub Hello{

 print "Hello, World!\n";

}

Function call

Hello();

Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other

programming language and they can be acessed inside the function using the

special array @_. Thus the first argument to the function is in $_[0], the second

is in $_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but passing more

than one array or hash normally causes them to lose their separate identities.

So we will use references (explained in the next chapter) to pass any array or

hash.

#!/usr/bin/perl

Function definition

sub Average{

 # get total number of arguments passed.

 $n = scalar(@_);

 $sum = 0;

 foreach $item (@_){

 $sum += $item;

[6] CO3 L4

 }

 $average = $sum / $n;

 print "Average for the given numbers : $average\n";

}

Function call

&Average(10, 20, 30);

Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, then

hash is automatically translated into a list of key/value pairs. For example −

#!/usr/bin/perl

Function definition

sub PrintHash{

 my (%hash) = @_;

 foreach my $key (keys %hash){

 my $value = $hash{$key};

 print "$key : $value\n";

 }

}

%hash = ('name' => 'Tom', 'age' => 19);

Function call with hash parameter

PrintHash(%hash);

Returning Value from a Subroutine

You can return a value from subroutine like you do in any other programming

language. If you are not returning a value from a subroutine then whatever

calculation is last performed in a subroutine is automatically also the return

value.

You can return arrays and hashes from the subroutine like any scalar but

returning more than one array or hash normally causes them to lose their

separate identities.

#!/usr/bin/perl

Function definition

sub Average{

 # get total number of arguments passed.

 $n = scalar(@_);

$sum = 0;

 foreach $item (@_)

{

 $sum += $item;

 }

 $average = $sum / $n;

 return $average;

}

Function call

$num = &Average(10, 20, 30);

print "Average for the given numbers : $num\n";

 b. Write a PERL script to populate an integer array and display all numbers greater than the average of
the array

#!/usr/bin/perl
$n = <STDIN>;
For ($i=0;$i<$n;$i++)
{
 $item = <STDIN>;
 Push(@ar,$item);
}
$sum = 0;
For($i=0;$i<$n;$i++)
{
$sum += $ar[$i];
}

$avg = $sum/$n;
For($i=0;$i<$n;$i++)
{
If($ar[$i]>$avg)
{
 Print $ar[$i].”\n”;
}
}

[4] CO3 L4

5 a. Explain the architecture of DBI. Discuss the database connection with a suitable example

DBI stands for Database Independent Interface for Perl which means DBI
provides an abstraction layer between the Perl code and the underlying
database, allowing you to switch database implementations really easily. The
DBI is a database access module for the Perl programming language. It provides
a set of methods, variables, and conventions that provide a consistent database
interface, independent of the actual database being used.

Architecture of a DBI Application

DBI is independent of any database available in backend. You can use DBI
whether you are working with Oracle, MySQL or Informix etc. This is clear from
the following architure diagram.

my $driver = "mysql";
my $database = "TESTDB";
my $dsn = "DBI:$driver:database=$database";
my $userid = “root”;

[10] CO3 L4

my $password = “ “;
my $dbh = DBI->connect($dsn, $userid, $password)

If a connection is established with the datasource then a Database Handle is
returned and saved into $dbh for further use otherwise $dbh is set
to undef value

Insert

 Prearing SQL statement with INSERT statement. This will be done
using prepare() API.

 Executing SQL query to select all the results from the database. This will be done
using execute()API.

 Releasing Stattement handle. This will be done using finish() API

READ Operation

READ Operation on any database means to fetch some useful information from
the database ie one or more records from one or more tables. So once our
database connection is established, we are ready to make a query into this
database. Following is the procedure to query all the records having AGE
greater than 20. This will take four steps

 Preparing SQL SELECT query based on required conditions. This will be done
using prepare()API.

 Executing SQL query to select all the results from the database. This will be
done using execute()API.

 Fetching all the results one by one and printing those results.This will be done
using fetchrow() API.

 Releasing Stattement handle. This will be done using finish() API

Disconnecting Database

To disconnect Database connection, use disconnect API as follows:

$rc = $dbh->disconnect();

Similarly for update and delete operation

6

a.
 Write a complete script for file uploading in PERL

Fileupload.html

<HTML>
 <HEAD></HEAD>
 <BODY>
 <FORM ACTION="upload.cgi" METHOD="post" ENCTYPE="multipart/form-
data">
 Photo to Upload: <INPUT TYPE="file" NAME="photo">

 <INPUT TYPE="submit" NAME="Submit" VALUE="Submit Form">
 </FORM>
 </BODY>
</HTML>

Upload.cgi

[10]

CO3 L4

#!C:\Perl\bin\perl.exe

 use CGI;

 $upload_dir = "C:/xampp/htdocs/Trials/upload/";

$query = new CGI;

print $query->header();

$filename = $query->param("photo");

$filename =~ s/.*[\/\\](.*)/$1/;

$upload_filehandle = $query->upload("photo");

open UPLOADFILE, ">$upload_dir/$filename";

while (<$upload_filehandle>)

{

 print UPLOADFILE;

}

close UPLOADFILE;

The file uploading works with a special type of form field called “file” and form

encoding called “multipart/form-data”.

1) Use the perl CGI library.

 Upload directory : The location in the server where to store the uploaded

files.

 ie a directory under the document root.

 $upload_dir = "C:/xampp/htdocs/Trials/upload/"; The absolute path to that

directory is specified.

2) Reading the form variables: Read the file name of the uploaded file.

$filename = $query->param("photo");

3) Some browsers pass the whole path to the file, instead of the filename alone

so strip off everything that includes backslashes(for windows browsers) and

forward slashes(for unix browsers) and which might appear before the

filename .

$filename =~ s/.*[\/\\](.*)/$1/;

4) Get the file handle:

Upload method (upload()) to get the file handle of the uploaded file. The file

handle points to a temporary file created by CGI.pm module.

 $upload_filehandle = $query->upload("photo");

5) Saving the file:

The file handle to the uploaded file is used to read its contents and save it out

to a new file in the destination location. Use the uploaded file’s filename as

the name of the new file

 open UPLOADFILE, ">$upload_dir/$filename";

 while (<$upload_filehandle>)

 {

 print UPLOADFILE;

7 a.
 Explain CGI Scripting . Explain CGI.pm methods.

Common Gateway Interface(CGI) is a standard way for web servers to interface
with executable programs installed on a server that generate web pages
dynamically. Such programs are known as CGI scripts . They are usually written
in a scripting language. Each Web server runs HTTP server software, which
responds to requests from Web browsers. Generally, the HTTP server has a
directory (folder), which is designated as a document collection — files that can
be sent to Web browsers connected to this server .

[10]

CO3 L4

https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/HTTP

 CGI.pm is a library of routines that simplify the creation and processing of html
web forms. It has two aspects:
The processing of data returned from the client browsers and the dynamic
creation of html pages containing web forms. The ability to easily extract values
from returned data and create dynamic web forms gives the developer a simple
way to maintain state across the web. The CGI.pm module can safely handle
GET, POST and multipart MIME data to extract data from the web forms. The
CGI.pm module can be used in a simple functional programming style or in an
object oriented way.

#!/usr/bin/per
use CGI “:standard”;
$q = new CGI;
print $q->header;
print $q->start_html(“welcome”);
print $q->h1(“hello”);
print $q->end_html();

This program can be saved in C:\xampp\htdocs\program.cgi and execute as
localhost\program.cgi

Ex: 2
#!"C:\xampp\perl\bin\perl.exe"

use CGI qw/:standard/;
use CGI::Carp(fatalsToBrowser);
use strict;

my $page = new CGI;

print ($page->header(),$page->start_html("parameters"),$page->h1("params
and values"));

my @param_names = $page->param;
my $next;
print "";

foreach $next(@param_names)
{
 print "".$next."=>".$page->param($next)."";
}
print "</ul";
print $page->end_html();
print "\n";

exit(0);

8 a. How to create and destroy a cookie in PERL.

A cookie is a small piece of information that is stored on the client machine .
They can be used to restrict access to whole areas, can be set to expire so that
they provide a simple form of access control and provide lots of information.

HTTP protocol is a stateless protocol. But for a commercial website it is required to
maintain session information among different pages. For example one user registration
ends after completing many pages. But how to maintain user's session information

[05] CO3 L4

across all the web pages.

In many situations, using cookies is the most efficient method of remembering and
tracking preferences, purchases, commissions, and other information required for
better visitor experience or site statistics.

How It Works

Your server sends some data to the visitor's browser in the form of a cookie.
The browser may accept the cookie. If it does, it is stored as a plain text record
on the visitor's hard drive. Now, when the visitor arrives at another page on
your site, the cookie is available for retrieval. Once retrieved, your server
knows/remembers what was stored.

Cookies are a plain text data record of 5 variable-length fields:

 Expires : The date the cookie will expire. If this is blank, the cookie will
expire when the visitor quits the browser.

 Domain : The domain name of your site.
 Path : The path to the directory or web page that set the cookie. This

may be blank if you want to retrieve the cookie from any directory or
page.

 Secure : If this field contains the word "secure" then the cookie may only
be retrieved with a secure server. If this field is blank, no such restriction
exists.

 Name=Value : Cookies are set and retrviewed in the form of key and
value pairs.

Ex to set a cookie
#!"C:\xampp\perl\bin\perl.exe"

use CGI qw/:standard/;
use strict;
use CGI::Carp(fatalstoBrowser);

my %txtval = ('visit'=>'1');
my $cookie = cookie(-name=>'cname',-value=>\%txtval,-path=>'/',-
expire=>'+2h');

print header(-cookie=>$cookie);
print start_html('creating a cookie');
print h1('creating cookies');
print end_html();

exit(0);

Ex to delete a cookie
#!"C:\xampp\perl\bin\perl.exe"

use CGI qw/:standard/;
use strict;
use CGI::Carp(fatalstoBrowser);

my $cookie = cookie(-name=>'cname',-value=>’ ‘,-path=>'/',-expire=>'-2h');

print header(-cookie=>$cookie);
print start_html('creating a cookie');
print h1('creating cookies');
print end_html();

exit(0);

 b. What are References in PERL . Explain in detail.

A Perl reference is a scalar data type that holds the location of another value

which could be scalar, arrays, or hashes. Because of its scalar nature, a

reference can be used anywhere, a scalar can be used. It is easy to create a

reference for any variable, subroutine or value by prefixing it with a backslash

as follows –

$scalarref = \$foo;

$arrayref = \@ARGV;

$hashref = \%ENV;

Dereferencing returns the value from a reference point to the location. To

dereference a reference simply use $, @ or % as prefix of the reference

variable depending on whether the reference is pointing to a scalar, array, or

hash. Following is the example to explain the concept –

#!/usr/bin/perl

$var = 10;

Now $r has reference to $var scalar.

$r = \$var;

Print value available at the location stored in $r.

print "Value of $var is : ", $$r, "\n";

@var = (1, 2, 3);

Now $r has reference to @var array.

$r = \@var;

Print values available at the location stored in $r.

print "Value of @var is : ", @$r, "\n";

%var = ('key1' => 10, 'key2' => 20);

Now $r has reference to %var hash.

$r = \%var;

Print values available at the location stored in $r.

print "Value of %var is : ", %$r, "\n";

[05] CO3 L4

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

CO1:
Develop Web apps using various

development languages and tools
1 - 3 - - - 3 3

CO2:

Build the ability to select the essential

technology needed to develop and

implement web applications

2 2 - - 1 2 3

CO3:
Design dynamic web applications using

PERL CGI - MySQL
 3 3 1 - 1 3 3

CO4:
Design dynamic web applications using

PHP MySQL
- - 3 2 - - 3 3

CO5: Ruby Rails application development 1 - 2 - - - 3 3

CO6:
Develop Web apps using various

development languages and tools
- - - 1 2 2 - -

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

