
Answer Key – IAT2 – Software Testing(13MCA444) 
 
1a. BVA test case for two variables functions 
In the general application of Boundary Value Analysis can be done in a uniform manner.  
The basic form of implementation is to maintain all but one of the variables at their  
nominal (normal or average) values and allowing the remaining variable to take on its  
extreme values. The values used to test the extremities are:  
•Min ------------------------------------ - Minimal  
•Min+ ------------------------------------ - Just above Minimal  
•Nom ------------------------------------ - Average  
•Max- ------------------------------------ - Just below Maximum  
•Max ------------------------------------ - Maximum  

 

 

Limitations of BVA 

Boundary Value Analysis works well when the Program Under Test (PUT) is a “function of several 
independent variables that represent bounded physical quantities” [1]. When these conditions are met BVA 
works well but when they are not we can find deficiencies in the results. For example the NextDate problem, 
where Boundary Value Analysis would place an even testing regime equally over the range, tester’s intuition  
and common sense shows that we require more emphasis towards the end of February or on leap years.  
The reason for this poor performance is that BVA cannot compensate or take into consideration the nature of a 
function or the dependencies between its variables. This lack of intuition or understanding for the variable 
nature means that BVA can be seen as quite rudimentary.  
 
1b. Robustness Testing 
Robustness testing can be seen as and extension of Boundary Value Analysis. The idea behind Robustness 
testing is to test for clean and dirty test cases. By clean I mean input variables that lie in the legitimate input 
range. By dirty I mean using input variables that fall just outside this input domain. In addition to the 
aforementioned 5 testing values (min, min+, nom, max-, max) we use two more values for each variable (min-, 
max+), which are designed to fall just outside of the input range. If we adapt our function f to apply to 
Robustness testing we find the following equation: f= 6n+ 1  
Equate this solution by the same reasoning that lead to the standard BVA equation. Each variable now has to 
assume 6 different values each whilst the other values are assuming their nominal value (hence the 6n), and 
there is again one instance whereby all variables assume their nominal value (hence the addition of the constant 
1). Robustness testing ensures a sway in interest, where the previous interest lied in the input to the program, the 
main focus of attention associated with Robustness testing comes in the expected outputs when and input variab 
le has exceeded the given input domain. For example the NextDate problem when we an entry like the 31st 



June we would expect an error message to the effect of “that date does not exist; please try again”. Robustness 
testing has the desirable property that it forces attention on exception handling. Although Robustness testing can 
be somewhat awkward in strongly typed languages it can show up altercations. In Pascal if a value is defined to 
reside in a certain range then and values that falls outside that range result in the run time errors that would 
terminate any normal execution. For this reason exception handling mandates Robustness testing.  
  

 

 

2a. Equivalence Class Test 

EC Testing is when you have a number of test items (e.g. values) that you want to test but because of cost 
(time/money) you do not have time to test them all. Therefore you group the test item into class where all items 
in each class are suppose to behave exactly the same. The theory is that you only need to test one of each item 
to make sure the system works. 
Example 1 
Children under 2 ride the buss for free. Young people pay $10, Adults $15 and Senior Citizen pay $5. 
Classes: 
Price:0 -> Age:0-1 
Price:10 -> Age:2-14  
Price:15 -> Age:15-64 
Price:5 -> Age:65-infinity  

Example 2 (more than one parameter) 
Cellphones K80, J64 and J54 run Java 5. K90 and J99 run Java 6. But there are two possible browsers FireFox 
and Opera, J models run FF and K models run O. 
Classes: 
Browser:FF, Java:5 -> Phones:J64,J54 
Browser:FF, Java:6 -> Phones:J99 
Browser:O, Java:5 -> Phones:K80 
Browser:O, Java:6 -> Phones:K90 

Weak Normal ECT 

With the notation as given previously, weak normal equivalence class testing is accomplished by using one 
variable from each equivalence class (interval) in a test case. (Note the effect of the single fault assumption.) 
For the running example, we would end up with the three weak equivalence class tests. These three test cases 
use one value from each equivalence class. The test case in the lower left rectangle corresponds to a value of x1 
in the class [a, b), and to a value of x2 in the class [e, f ). The test case in the upper center rectangle corresponds 
to a value of x1 in the class [b, c) and to a value of x2 in the class [f, g]. The third test case could be in either 



rectangle on the right side of the valid values. We identified these in a systematic way, thus the apparent pattern. 
In fact, we will always have the same number of weak equivalence class test cases as classes in the partition 
with the largest number of subsets. What can we learn from a weak normal equivalence class test case that fails, 
that is, one for which the expected and actual outputs are inconsistent? There could be a problem with x1, or a 
problem with x2, or maybe an interaction between the two. This ambiguity is the reason for the “weak” 
designation. If the expectation of failure is low, as it is for regression testing, this can be an acceptable choice. 
When more fault isolation is required, the stronger forms, discussed next, are indicated. 

 
 

Strong Normal ECT 

 

Strong equivalence class testing is based on the multiple fault assumption, so we need test cases from each 
element of the Cartesian product of the equivalence classes. Notice the similarity between the pattern of these 
test cases and the construction of a truth table in propositional logic. The Cartesian product guarantees that we 
have a notion of “completeness” in two senses: we cover all the equivalence classes, and we have one of each 
possible combination of inputs. As we shall see from our continuing examples, the key to “good” equivalence 
class testing is the selection of the equivalence relation. Watch for the notion of inputs being “treated the same.” 
Most of the time, equivalence class testing defines classes of the input domain. There is no reason why we 
could not define equivalence relations on the output range of the program function being tested; in fact, this is 
the simplest approach for the triangle problem. 
 

 
 

2b. DD-Path 

A DD-path is a sequence of nodes in a program graph such that 
Case 1: It consists of a single node with indeg = 0. 
Case 2: It consists of a single node with outdeg = 0. 
Case 3: It consists of a single node with indeg ≥ 2 or outdeg ≥ 2. 
Case 4: It consists of a single node with indeg = 1 and outdeg = 1. 
Case 5: It is a maximal chain of length ≥ 1. 
Cases 1 and 2 establish the unique source and sink nodes of the program graph of a structured program as initial 
and final DD-paths. Case 3 deals with complex nodes; it assures that no node is contained in more than one DD-
path. Case 4 is needed for “short branches”; it also preserves the one-fragment, one DD-path principle. Case 5 is 



the “normal case,” in which a DD-path is a single entry, single-exit sequence of nodes (a chain). The “maximal” 
part of the case 5 definition is used to determine the final node of a normal (nontrivial) chain. 
 
DD-Path for Triangle Problem 

 
 
3a.  

 
 Cyclomatic complexity=3 
 
 
 
 
 
3b. Metric Based Testing 

Fundamental limitations of specification-based testing is that it is impossible to know either the extent of 
redundancy or the possibility of gaps corresponding to the way a set of functional test cases exercises a 
program. Test coverage metrics are a device to measure the extent to which a set of test cases covers (or 
exercises) a program. 
Program Graph–Based Coverage Metrics: Given a set of test cases for a program, they constitute node 

coverage if, when executed on the program, every node in the program graph is traversed. Denote this level of 
coverage as Gnode, where the G stands for program graph. Since nodes correspond to statement fragments, this 
guarantees that every statement fragment is executed by some test case. If we are careful about defining 
statement fragment nodes, this also guarantees that statement fragments that are outcomes of a decision-making 
statement are executed. 
E.F. Miller’s Coverage Metrics: Having an organized view of the extent to which a program is tested makes it 
possible to sensibly manage the testing process. Most quality organizations now expect the C1 metric (DD-path 
coverage) as the minimum acceptable level of test coverage. These coverage metrics form a lattice in which 
some are equivalent and some are implied by others. The importance of the lattice is that there are always fault 

 

 



types that can be revealed at one level and can escape detection by inferior levels of testing. Miller (1991) 
observes that when DD-path coverage is attained by a set of test cases, roughly 85% of all faults are revealed. 
The test coverage metrics tell us what to test but not how to test it. In this section, we take a closer look at 
techniques that exercise source code. We must keep an important distinction in mind: Miller’s test coverage 
metrics are based on program graphs in which nodes are full statements, whereas our formulation allows 
statement fragments (which can be entire statements) to be nodes. 

 
 
4a. Waterfall Spin Off 

 Development in stages 
o Level use of staff across all types 
o Testing now entails both 

 Regression 
 Progression 

 Main variations involve constructing a sequence of systems 
o Incremental 
o Evolutionary 
o Spiral 

 Waterfall model is applied to each build 
o Smaller problem than original 
o System functionality does not change 

 Incremental 
o Have high-level design at the beginning 
o Low-level design results in a series of builds 

 Incremental testing is useful 
o System testing is not affected 
o Level off staffing problems 

 Evolutionary 
o First build is defined 
o Priorities and customer define next build 
o Difficult to have initial high-level design 

 Incremental testing is difficult 
 System testing is not affected 

 Spiral 
o Combination of incremental and evolutionary 
o After each build assess benefits and risks 

 Use to decide go/no-go and direction 



o Difficult to have initial high-level design 
 Incremental testing is difficult 
 System testing is not affected 

 Advantage of spiral models 
o Earlier synthesis and deliverables 
o More customer feedback 
o Risk/benefit analysis is rigorous 

 
Specification Based Life Cycle Models 

When systems are not fully understood (by either the customer or the developer), functional decomposition 
is perilous at best. Barry Boehm jokes when he describes the customer who says “I don’t know what I want, but 
I’ll recognize it when I see it.” The rapid prototyping life cycle deals with this by providing the “look and feel” 
of a system. Thus, in a sense, customers can recognize what they “see.” In turn, this drastically reduces the 
specification-to-customer feedback loop by producing very early synthesis. Rather than build a final system, a 
“quick and dirty” prototype is built and then used to elicit customer feedback. Depending on the feedback, more 
prototyping cycles may occur. Once the developer and the customer agree that a prototype represents the 
desired system, the developer goes ahead and builds to a correct specification. At this point, any of the waterfall 
spin-offs might also be used. The agile life cycles are the extreme of this pattern. Rapid prototyping has no new 
implications for integration testing; however, it has very interesting implications for system testing. Where are 
the requirements? Is the last prototype the specification? How are system test cases traced back to the 
prototype? One good answer to questions such as these is to use the prototyping cycles as information-gathering 
activities and then produce a requirements specification in a more traditional manner. Another possibility is to 
capture what the customer does with the prototypes, define these as scenarios that are important to the customer, 
and then use these as system test cases. These could be precursors to the user stories of the agile life cycles. The 
main contribution of rapid prototyping is that it brings the operational (or behavioral) viewpoint to the 
requirements specification phase. Usually, requirements specification techniques emphasize the structure of a 
system, not its behavior. This is unfortunate because most customers do not care about the structure, and they 
do care about the behavior. Executable specifications are an extension of the rapid prototyping concept. With 
this approach, the requirements are specified in an executable format (such as finite state machines, StateCharts, 
or Petri nets). The customer then executes the specification to observe the intended system behavior and 
provides feedback as in the rapid prototyping model. The executable models are, or can be, quite complex. This 
is an understatement for the full-blown version of StateCharts. Building an executable model requires expertise, 
and executing it requires an engine. Executable specification is best applied to event-driven systems, articularly 
when the events can arrive in different orders. David Harel, the creator of StateCharts, refers to such systems as 
“reactive” (Harel, 1988) because they react to external events. As with rapid prototyping, the purpose of an 
executable specification is to let the customer experience scenarios of intended behavior. Another similarity 
is that executable models might have to be revised on the basis of customer feedback. One side benefit is that a 
good engine for an executable model will support the capture of “interesting” system transactions, and it is often 
a nearly mechanical process to convert these into true system test cases. If this is done carefully, system testing 
can be traced directly back to the requirements. Once again, this life cycle has no implications for integration 
testing. One big difference is that the requirements specification document is explicit, as opposed to a prototype. 
More important, it is often a mechanical process to derive system test cases from an executable specification. 
Although more work is required to develop an executable specification, this is partially offset by the reduced 
effort to generate system test cases. Here is another important distinction: when system testing is based on an 
executable specification, we have an interesting form of structural testing at the system level. Finally, as we saw 
with rapid prototyping, the executable specification step can be combined with any of the iterative life cycle 
models. 
 



 
4b. Pros and cons of traditional waterfall model 

 

Some of the major advantages of the Waterfall Model are as follows − 

 Simple and easy to understand and use 
 Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a review 

process. 
 Phases are processed and completed one at a time. 
 Works well for smaller projects where requirements are very well understood. 
 Clearly defined stages. 
 Well understood milestones. 
 Easy to arrange tasks. 
 Process and results are well documented. 

The major disadvantages of the Waterfall Model are as follows − 

 No working software is produced until late during the life cycle. 
 High amounts of risk and uncertainty. 
 Not a good model for complex and object-oriented projects. 
 Poor model for long and ongoing projects. 
 Not suitable for the projects where requirements are at a moderate to high risk of changing. So, risk and 

uncertainty is high with this process model. 
 It is difficult to measure progress within stages. 
 Cannot accommodate changing requirements. 
 Adjusting scope during the life cycle can end a project. 
 Integration is done as a "big-bang. at the very end, which doesn't allow identifying any technological or 

business bottleneck or challenges early. 

5a. A decision table is an excellent tool to use in both testing and requirements management. Essentially it is a 
structured exercise to formulate requirements when dealing with complex business rules. Decision tables are 
used to model complicated logic. 
 
 



Decision Table for the NextDate function 

 
 
5b. Path testing is an approach to testing where you ensure that every path through a program has been executed at 

least once. You normally use a dynamic analyzer tool or test coverage analyzer to check that all of the code in a program 

has been executed. 

Path Testing is a structural testing method based on the source code or algorithm and NOT based on the 
specifications. It can be applied at different levels of granularity. 

Path Testing Assumptions: 

 The Specifications are Accurate 
 The Data is defined and accessed properly 
 There are no defects that exist in the system other than those that affect control flow 

Path Testing Techniques: 

 Control Flow Graph (CFG) - The Program is converted into Flow graphs by representing the code into 
nodes, regions and edges. 

 Decision to Decision path (D-D) - The CFG can be broken into various Decision to Decision paths and 
then collapsed into individual nodes. 

 Independent (basis) paths - Independent path is a path through a DD-path graph which cannot be 
reproduced from other paths by other methods. 

 



6a. A definition/use path(DU-path) with respect to a variable v (denoted du-path) is a path in PATHS(P) such 
that, for some v ∈  V, there are define and usage nodes DEF(v, m) and USE(v, n) such that m and n are the initial 
and final nodes of the path. 

 
 

6b. Slice-Based Testing Definitions 

 Given a program P, and a program graph G(P) in which statements and statement fragments are 
numbered, and a set V of variables in P, the slice on the variable set V at statement fragment n, written 
S(V,n), is the set node numbers of all statement fragments in P prior to n that contribute to the values of 
variables in V at statement fragment n 

 The idea of slices is to separate a program into components that have some useful meaning 

 We will include CONST declarations in slices 
 Five forms of usage nodes  

 P-use (used in a predicate (decision)) 
 C-use (used in computation) 
 O-use (used for output, e.g. writeln()) 
 L-use (used for location, e.g. pointers) 
 I-use (iteration, e.g. internal counters) 

 Two forms of definition nodes  
 I-def (defined by input, e.g. readln()) 
 A-def (defined by assignment) 

 For now, we presume that the slice S(V,n) is a slice on one variable, that is, the set V consists of a single 
variable, v 

 If statement fragment n (in S(V,n)) is a defining node for v, then n is included in the slice 
 If statement fragment n (in S(V,n)) is a usage node for v, then n is not included in the slice 
 P-uses and C-uses of other variables are included to the extent that their execution affects the value of 

the variable v 
 O-use, L-use, and I-use nodes are excluded from slices 
 Consider making slices compliable 

  



Slice-Based Testing Examples 

 Find the following program slices 
 S(commission,48) 
 S(commission,40) 
 S(commission,39) 
 S(commission,38) 
 S(sales,35) 
 S(num_locks,34) 
 S(num_stocks,34) 
 S(num_barrels,34) 
  S(commission,48)  

 {1-5,8-11,13,14,19-30,36,47,48,53} 
 S(commission,40), S(commission,39), S(commission,38)  

 {Ø} 
 S(sales,35)  

 {Ø} 
 S(num_locks,34)  

 {1,8,9,10,13,14,19, 22,23,24,26,29,30, 53} 
 S(num_stocks,34)  

 {1,8,9,10,13,14,20, 22-25,27,29,30,53} 

 S(num_barrels,34)  
 {1,8,9,10,13,14,21-25,28,29,30,53} 

7a. Unit Testing - As the name suggests, this method tests at the object level. Individual software components 
are tested for any errors. Knowledge of the program is needed for this test and the test codes are created to 
check if the software behaves as it is intended to. 

Integration Testing - Individual modules that are already subjected to unit testing are integrated with one 
another. Generally the two approaches are followed: 

1) Top-Down 
2) Bottom-Up 

System Testing - Is carried out without any knowledge of the internal working of the system. The tester will try 
to use the system by just following requirements, by providing different inputs and testing the generated 
outputs. This test is also known as closed-box testing or black-box. 

7b. Top down Integration Testing: In this approach testing is conducted from main module to sub module. if 
the sub module is not developed a temporary program called STUB is used for simulate the submodule. 
Advantages: 
- Advantageous if major flaws occur toward the top of the program. 
- Once the I/O functions are added, representation of test cases is easier. 
- Early skeletal Program allows demonstrations and boosts morale. 
Disadvantages: 
- Stub modules must be produced 
- Stub Modules are often more complicated than they first appear to be. 
- Before the I/O functions are added, representation of test cases in stubs can be difficult. 



- Test conditions ma be impossible, or very difficult, to create. 
- Observation of test output is more difficult. 
- Allows one to think that design and testing can be overlapped. 
- Induces one to defer completion of the testing of certain modules. 
 
Bottom up Integration Testing: In this approach testing is conducted from sub module to main module, if the 
main module is not developed a temporary program called DRIVERS is used to simulate the main module. 
Advantages: 
- Advantageous if major flaws occur toward the bottom of the program. 
- Test conditions are easier to create. 
- Observation of test results is easier. 
Disadvantages: 
- Driver Modules must be produced. 
- The program as an entity does not exist until the last module is added. 
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