

1

IAT2 –Solution(Answer Key)

Subject:Python Programming(16MCA21)

1)a)List Creation:

The general form of a list expression is as follows:

[«expression1», «expression2», ... , «expressionN»]

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

>>> whales

[5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

Slicing and Cloning:

We can produce a new list taking a slice of the list:

>>> whales[4:10]

Cloning:

Modifying:

Modifying is based on index of list.

>>>Whales[3]=22

Traversing a list using for in:

b)The general form of a for loop over a list is as follows:

for «variable» in «list»:

«block»

A for loop is executed as follows:

• The loop variable is assigned the first item in the list, and the loop

block—the body of the for loop—is executed.

• The loop variable is then assigned the second item in the list and the loop

body is executed again.

b) for loop:

for «variable» in «str»:

«block»

As with a for loop over a list, the loop variable gets assigned a new value at

2

the beginning of each iteration. In the case of a loop over a string, the variable

is assigned a single character.

For example, we can loop over each character in a string, printing the

uppercase letters:

>>> country = 'United States of America'

>>> for ch in country:

... if ch.isupper():

... print(ch)

while loop:

for loops are useful only if you know how many iterations of the loop you need.In some

situations, it is not known in advance how many loop iterations to execute. In a game program,

for example, you can’t know whether a player is going to want to play again or quit. In these

situations, we use a while loop.

The general form of a while loop is as follows:

while «expression»:

«block»

The while loop expression is sometimes called the loop condition, just like the condition of an if

statement. When Python executes a while loop, it evaluates the expression. If that expression

evaluates to False, that is the end of the execution of the loop. If the expression evaluates to

True, on the other hand,Python executes the loop body once and then goes back to the top of the

loopand reevaluates the expression. If it still evaluates to True, the loop body is executed again.

This is repeated—expression, body, expression, body—until

the expression evaluates to False, at which point Python stops executing the loop.

Here’s an example:
>>> rabbits = 3

>>> while rabbits > 0:

... print(rabbits)

... rabbits = rabbits - 1

...

2)a)Steps in opening a file:

b)Reading and Writing:

3

with open('file_example.txt', 'r') as file:

contents = file.read()

print(contents)

When called with no arguments, it reads everything from the current file

cursor all the way to the end of the file and moves the file cursor to the end

of the file. When called with one integer argument, it reads that many characters

and moves the file cursor after the characters that were just read

This example reads the contents of a file into a list of strings and then prints

that list:

with open('file_example.txt', 'r') as example_file:

lines = example_file.readlines()

print(lines)

Here is the output:

['First line of text.\n', 'Second line of text.\n', 'Third line of text.\n']

Take a close look at that list; you’ll see that each line ends in \n characters.

Python does not remove any characters from what is read; it only splits them

into separate strings.

The “For Line in File” Technique

Use this technique when you want to do the same thing to every line from

the file cursor to the end of a file. On each iteration, the file cursor is moved

to the beginning of the next line.

This code opens file planets.txt and prints the length of each line in that file:

>>> with open('planets.txt', 'r') as data_file:

... for line in data_file:

... print(len(line))

...

with open('topics.txt', 'w') as output_file:

output_file.write('Computer Science')

In addition to writing characters to a file, method write returns the number of

characters written.

To create a new file or to replace the contents of an existing file, we use write

mode ('w'). If the filename doesn’t exist already, then a new file is created;
otherwise the file contents are erased and replaced. Once opened for writing,

you can use method write to write a string to the file.

Rather than replacing the file contents, we can also add to a file using the

append mode ('a'). When we write to a file that is opened in append mode, the

data we write is added to the end of the file and the current file contents are

not overwritten.

C)#matrix multiplication

r = raw_input("Enter the no of rows:")

c = raw_input("Enter the no of columns:")

print 'Enter numbers in array: '

matrix1=[[0 for x in range(int(r))] for y in range(int(c))]

for i in range(int(r)):

for j in range(int(c)):

4

n = raw_input("num :")

matrix1[i][j]=int(n)

for i in range(int(r)):

for j in range(int(c)):

print(matrix1[i][j])

r = raw_input("Enter the no of rows:")

c = raw_input("Enter the no of columns:")

print 'Enter numbers in array: '

matrix2=[[0 for x in range(int(r))] for y in range(int(c))]

for i in range(int(r)):

for j in range(int(c)):

n = raw_input("num :")

matrix2[i][j]=int(n)

for i in range(int(r)):

for j in range(int(c)):

print(matrix2[i][j])

iterate through rows of X

for i in range(int(r)):

iterate through columns of Y

for j in range(len(matrix1[0])):

iterate through rows of Y

for k in range(int(c)):

result1[i][j] += matrix1[i][k] * matrix2[k][j]

for r in result1:

print(r)

iterate through rows of X

for i in range(len(X)):

iterate through columns of Y

for j in range(len(Y[0])):

iterate through rows of Y

for k in range(len(Y)):

result[i][j] += X[i][k] * Y[k][j]

3)a)

def addstudent():

 No=input(“enter student no”)
 Name=input(“enter student name”)
 Stu_list.append(no,name)

def deletestudent():

 Stu_list.delete(no,name)

5

N=input(“enter the no of students”)
Stu_list=[[0 for x in range(2))] for y in range(int(n))]

For I in range(n):

Stu_list[0][i],stu_list[0][i]=input(“enter the roll no and student”)
Op_dict={1:addstudent,2:deletestudent,3:Display,4:Exit}

ch = 0

while (ch != 5):

print("1. Student insert")

print("2. Student delete")

print("3. Display")

print("4. Exit")

Selection = int(input("enter your option: "))

if (ch >= 1) and (ch <4):

op_dict[Selection]()

b)

6

4a)

i)>>>list(range(int))

List(Range(int,int))

List(Range(int,int,int))

ii)List=[10,20,30,40]

For item in list :

 Item+=20

Print list

b)Tuples:

Python also has an immutable sequence type called a tuple. Tuples are written

using parentheses instead of brackets; like strings and lists, they can be subscripted,

sliced, and looped over:

>>> bases = ('A', 'C', 'G', 'T')

>>> for base in bases:

... print(base)

...

A

C

G

T

7

Assigning to Multiple Variables Using Tuples

You can assign to multiple variables at the same time:

>>> (x, y) = (10, 20)

>>> x

10

>>> y

20

c)output:Infinte loop printing odd numbers

5a)

Dictionary:

8

b)i) list(range(33,50))

 ii) >>>list(range(10,1,-1))

c)#print matrix

 r = raw_input("Enter the no of rows:")

c = raw_input("Enter the no of columns:")

print 'Enter numbers in array: '

matrix1=[[0 for x in range(int(r))] for y in range(int(c))]

for i in range(int(r)):

for j in range(int(c)):

n = raw_input("num :")

matrix1[i][j]=int(n)

6a)Fibonacci using dictionary:

b)
def intersect(a, b):

9

 """ return the intersection of two lists """

 return list(set(a) & set(b))

a = [0,1,2,0,1,2,3,4,5,6,7,8,9]

 b = [5,6,7,8,9,10,11,12,13,14]

 print intersect(a, b)

7a)

b)

10

Docstring for the above function:

 “”” (list)-> (list)

8a) def openread():

global fo

print("File is opening in Read mode : ")

fo = open("temp.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

with open("temp.txt", "r") as fin:

print fin.read()

def openwrite():

global fo

print("File is opening in Write mode : ")

fo = open("temp.txt", "w+")

fo.write("nex text is written in temp file")

fo.write("and another line")

def getposition():

global fo

print("Gettting Current File pointer position : ")

position = fo.tell();

print "Current file position : ", position

def setatbegin():

global fo

print("Reposition the pointer at the beginning of the File : ")

position = fo.seek(0, 0);

def errhandler ():

print("Your input has not been recognised")

MenuSelect = {

1: openread,

2: openwrite,

3: getposition,

11

4: setatbegin

}

Selection = 0

while (Selection != 5):

print("1. Open in Read Mode")

print("2. Open in Write Mode")

print("3. Current Position")

print("4. Set at the Beginning")

print("5. Quit")

Selection = int(input("Select a Menu option: "))

if (Selection >= 1) and (Selection < 5):

MenuSelect[Selection]()

b)

two dictionaries
blow this up to 1000 to see the difference
some_dict = { 'zope':'zzz', 'python':'rocks' }
another_dict = { 'python':'rocks', 'perl':'$' }

bad way
two lots of "in"
intersect = []
for item in some_dict.keys():
 if item in another_dict.keys():
 intersect.append(item)

print "Intersects:", intersect

good way
use simple lookup with has_keys()

12

intersect = []
for item in some_dict.keys():
 if another_dict.has_key(item):
 intersect.append(item)

print "Intersects:", intersect

