

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

Sub: Object Oriented Programming Using C++ Code: 16MCA22

Date: 08.05.2017 Duration: 90 mins Max Marks: 50 Sem: II Branch: MCA

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) What are virtual functions? With an example demonstrate the use of virtual

functions.

[10] CO2 L2

2(a) Explain the overloading of new & delete operator. [10] CO2 L2

3(a) What are pure virtual functions? Discuss its significance. [5] CO2 L2

(b) Differentiate between early binding and late binding [5] CO2 L2

4(a)) Explain the order of constructor and destructor called in multi level inheritance

with example.

[4] CO2 L2

(b) Write a cpp program which shows how a virtual function is called through a base

class reference.

[6] CO2 L2

5(a) Discuss how to overload an operator using friend and write a program to

overload ++ operator using friend.
[6] CO2 L2

(b) Explain overloading of special operator [] . [4] CO2 L2

6(a) Which are the different access specifiers? Explain the effect of inheritance when

deriving by different access specifiers with appropriate examples.

[10] CO2 L2

7(a) What is template? Explain template function and template class with example. [5] CO2 L2

(b) Create a class stack using template. Use this class to create a stack with integer

and double elements.

[5] CO2 L3

8(a) What is Exception? Explain the use of try, catch and throw with example. [6] CO2 L2

(b) Write a program for the exception division by zero. [4] CO2 L2

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

CO1:

Differentiate between object oriented programming and

procedure oriented programming &

Disseminate the importance of Object oriented

programming

1 1 - - - - 3 3

CO2:

Apply C++ features such as Classes, objects, constructors,

destructors, inheritance,

operator overloading, and Polymorphism, Template and

exception handling in program

design and implementation.

2 2 3 - - - 2 3

CO3:

 Use C++ to demonstrate practical experience in

developing object-oriented solutions.

1 3 3 1 - - 3 3

CO4:

Analyze a problem description and build object-oriented

software using good coding

practices and techniques.

1 2 3 2 - - 3 3

CO5:

Implement an achievable practical application and analyze

issues related to object-oriented

techniques in the C++ programming language.

1 1 2 - - - 3 3

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 - Apply knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - team work; PO5 - Ethics; PO6 - Communication; PO7- Business Solution; PO8 – Life-long learning;

CMR

INSTITUTE OF

USN

TECHNOLOGY

Internal Assessment Test 2 –April 2016

 Answer any five of the following. 5X10=50M

1.What are virtual functions? With an example demonstrate the use of virtual functions (10M)

A virtual function is a member function that is declared within a base class and redefined

by a derived class. To create a virtual function,we have to precede the function's declaration in the

base class with the keyword virtual.

 When a class containing a virtual function is inherited,the derived class redefines the virtual

function to fit its own needs. Virtual functions implement the "one interface, multiple methods"

philosophy that underlies polymorphism. The virtual function within the base class defines the form

of the interface to that function. Each redefinition of the virtual function by a derived class

implements its operation as it relates specifically to the derived class.The redefinition creates a

specific method.

 It supports run-time polymorphism as they behave differently when accessed via a pointer. A

base-class pointer can be used to point to an object of any class derived from that base. When a base

pointer points to a derived object that contains a virtual function, C++ determines which version of

that function to call based upon the type of object pointed to by the pointer. And this determination is

made at run time. Thus, when different objects are pointed to, different versions of the virtual function

are executed.

Syntax:

 virtual return-type function_name()

 {

 //body of the function

 }

Ex:

#include <iostream>

using namespace std;

class base

{

public:

 virtual void vfunc()

 {

 cout << "This is base's vfunc().\n";

 }

Sub: Object Oriented Programming Using C++ Code: 16MCA 22

Date: 08/05/2017 Duration: 90 mins Max Marks: 50 Sem: 2 Branch: MCA

};

class derived1 : public base

{

public:

 void vfunc()

 {

 cout << "This is derived1's vfunc().\n";

 }

};

class derived2 : public base

 {

public:

 void vfunc()

 {

 cout << "This is derived2's vfunc().\n";

 }

};

int main()

{

 base *p, b;

 derived1 d1;

 derived2 d2;

 // point to base

 p = &b;

 p->vfunc(); // access base's vfunc()

 // point to derived1

 p = &d1;

 p->vfunc(); // access derived1's vfunc()

 // point to derived2

 p = &d2;

 p->vfunc(); // access derived2's vfunc()

 return 0;

}

2.a) Explain the overloading of new & delete operator.

It is possible to overload new and delete.

.

The skeletons for the functions that overload new and delete are shown here:

// Allocate an object.

void *operator new(size_t size)

{

/* Perform allocation. Throw bad_alloc on failure.

Constructor called automatically. */

return pointer_to_memory;

}

// Delete an object.

void operator delete(void *p)

{

/* Free memory pointed to by p.

Destructor called automatically. */

}

The type size_t is a defined type capable of containing the largest single piece

of memory that can be allocated. The overloaded new function must return a pointer to the memory

that it allocates, orthrow a bad_alloc exception if an allocation error occurs.

The delete function receives a pointer to the region of memory to be freed. It

then releases the previously allocated memory back to the system. When an object

is deleted, its destructor is automatically called.

To overload the new and delete operators for a class, simply make the overloaded

operator functions class members.

For example, here the new and delete operators are overloaded for the loc class:

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

void *operator new(size_t size);

void operator delete(void *p);

};

// new overloaded relative to loc.

void *loc::operator new(size_t size)

{

void *p;

Output from this program is shown here.

In overloaded new.

In overloaded new.

10 20

-10 -20

In overloaded delete.

In overloaded delete.

When new and delete are for a specific class, the use of these operators on any

other type of data causes the original new or delete to be employed. The overloaded

operators are only applied to the types for which they are defined. This means that if

you add this line to the main(), the default new will be executed:

int *f = new float; // uses default new

You can overload new and delete globally by overloading these operators outside

of any class declaration.

To see an example of overloading new and delete globally, examine this program:

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

};

// Global new

void *operator new(size_t size)

{

void *p;

p = malloc(size);

if(!p) {

bad_alloc ba;

throw ba;

}

return p;

}

// Global delete

void operator delete(void *p)

{

free(p);

}

int main()

{

loc *p1, *p2;

float *f;

try {

p1 = new loc (10, 20);

} catch (bad_alloc xa) {

cout << "Allocation error for p1.\n";

return 1;;

}

try {

p2 = new loc (-10, -20);

} catch (bad_alloc xa) {

cout << "Allocation error for p2.\n";

return 1;

}

try {

f = new float; // uses overloaded new, too

} catch (bad_alloc xa) {

cout << "Allocation error for f.\n";

return 1;;

}

*f = 10.10F;

cout << *f << "\n";

p1->show();

p2->show();

delete p1;

delete p2;

delete f;

return 0;

}

Overloading new and delete for Arrays

To allocate and free arrays,you must use these forms of new and delete.

// Allocate an array of objects.

void *operator new[](size_t size)

{

/* Perform allocation. Throw bad_alloc on failure.

Constructor for each element called automatically. */

return pointer_to_memory;

}

// Delete an array of objects.

void operator delete[](void *p)

{

/* Free memory pointed to by p.

Destructor for each element called automatically.

*/

}

Overloading the nothrow Version of new and delete

You can also create overloaded nothrow versions of new and delete.

// Nothrow version of new.

void *operator new(size_t size, const nothrow_t &n)

{

// Perform allocation.

if(success) return pointer_to_memory;

else return 0;

}

// Nothrow version of new for arrays. void *operator new[](size_t size, const nothrow_t &n)

{

// Perform allocation.

if(success) return pointer_to_memory;

else return 0;

}

void operator delete(void *p, const nothrow_t &n)

{

// free memory

}

void operator delete[](void *p, const nothrow_t &n)

{

// free memory

}

++

3.a) What are pure virtual functions? Discuss its significance. When a

virtual function is not

 redefined by a derived class, the version defined in the base class will be used. When there is no

meaningful definition of a virtual function within a base class ie., when a base class may not be able

to define an object sufficiently to allow a base-class virtual function to be created.

Thus we can ensure that all derived classes override a virtual function by using pure virtual function.

A pure virtual function is a virtual function that has no definition within the base class.

To declare a pure virtual function, use this general form:

 virtual type func-name(parameter-list) = 0;

When a virtual function is made pure, any derived class must provide its owndefinition. If the derived

class fails to override the pure virtual function, a compile-time error will result.

Ex:

#include <iostream>

using namespace std;

class number

{

protected:

 int val;

public:

 void setval(int I)

 {

 val = i;

 }

 // show() is a pure virtual function

 virtual void show() = 0;

};

class hextype : public number

 {

public:

 void show()

 {

 cout << hex << val << "\n";

 }

};

class dectype : public number

 {

public:

 void show()

 {

 cout << val << "\n";

 }

};

class octtype : public number

{

public:

 void show()

 {

 cout << oct << val << "\n";

 }

};

int main()

{

 dectype d;

 hextype h;

 octtype o;

 d.setval(20);

 d.show(); // displays 20 - decimal

 h.setval(20);

 h.show(); // displays 14 – hexadecimal

 o.setval(20);

 o.show(); // displays 24 - octal

 return 0;

}

 In the above example,a base class may not be able to meaningfully define a virtual function.

In number class simply provides the common interface for the derived types to use. There is no

reason to define show() inside number since the base of the number is undefined. We can always

create a placeholder definition of a virtual function. By making show() as pure also ensures that all

derived classes will redefine it to meet their own needs.

 b) Differentiate between early binding and late binding (5M)

Early Binding Late Binding

1.Early binding refers to events that occur at

compile time

1.Late binding refers to events that occur at run

time

2.The information needed to call a function is

known at compile time

2.The information needed to call a function is not

known until run time

3.It is more efficient 3.It is more flexible

4.It is fast 4.It is slow

5.Example:function overloading 5.Example: virtual functions

 4a) Explain the order of constructor and destructor called in multi level inheritance with

example
It is possible for a base class, a derived class, or both to contain constructors and/or

destructors .In case of multi level inheritance,the constructors are called in the order of derivation and

destructors are called in reverse order.

EX:

#include <iostream>

using namespace std;

class base {

public:

base() { cout << "Constructing base\n"; }

~base() { cout << "Destructing base\n"; }

};

class derived1 : public base {

public:

derived1() { cout << "Constructing derived1\n"; }

~derived1() { cout << "Destructing derived1\n"; }

};

class derived2: public derived1 {

public:

derived2() { cout << "Constructing derived2\n"; }

~derived2() { cout << "Destructing derived2\n"; }

};

int main()

{

derived2 ob;

// construct and destruct ob

return 0;

}

 The above program yields the following output

Constructing base

Constructing derived1

Constructing derived2

Destructing derived2

Destructing derived1

Destructing base

4b. Write a cpp program which shows how a virtual function is called through a base class

reference. (10M)

Ex:

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

}

};

class derived1 : public base {

public:

void vfunc() {

cout << "This is derived1's vfunc().\n";

}

};

class derived2 : public base {

public:

void vfunc() {

cout << "This is derived2's vfunc().\n";

}

};

// Use a base class reference parameter.

void f(base &r) {

r.vfunc();

}

int main()

{

base b;

derived1 d1;

derived2 d2;

f(b); // pass a base object to f()

f(d1); // pass a derived1 object to f()

f(d2); // pass a derived2 object to f()

return 0;

}

 In this example, thefunction f() defines a reference parameter of type base. Inside main(), the

function is called using objects of type base, derived1, and derived2. Inside f(), the specificversion of

vfunc() that is called is determined by the type of object being referenced when the function is called.

 5a)Discuss how to overload an operator using friend and write a program to overload ++

operator using friend.
 If we want to use a friend function to overload the increment or decrement operators,

we must pass the operand as a reference parameter. This is because friend functions

 do not have this pointers. If we overload these operators by using a friend, then the

 operand is passed by value as a parameter. This means that a friend operator function

 has no way to modify the operand. Since the friend operator function is not passed a this pointer to

the operand, but rather a copy of the operand, no changes made to

 that parameter affect the operand that generated the call. But we can do by specifying the parameter

to the friend operator function as a reference

 parameter. This causes any changes made to the parameter inside the function to affect

 the operand that generated the call.

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

loc operator=(loc op2);

friend loc operator++(loc &op);

friend loc operator--(loc &op);

};

// Overload assignment for loc.

loc loc::operator=(loc op2)

{

longitude = op2.longitude;

latitude = op2.latitude;

return *this; // i.e., return object that generated call

}

// Now a friend; use a reference parameter.

loc operator++(loc &op)

{

op.longitude++;

op.latitude++;

return op;

}

// Make op-- a friend; use reference.

loc operator--(loc &op)

{

op.longitude--;

op.latitude--;

int main()

{

loc ob1(10, 20), ob2;

ob1.show();

++ob1;

ob1.show(); // displays 11 21

ob2 = ++ob1;

ob2.show(); // displays 12 22

--ob2;

ob2.show(); // displays 11 21

return 0;

}

5.b) Explain overloading of special operator [] .

6a.Which are the different access specifiers? Explain the effect of inheritance when deriving by

different access specifiers with appropriate examples.
 Data hiding is one of the important features of Object Oriented Programming which allows

preventing the functions of a program to access directly the internal representation of a class type. The

access restriction to the class members is specified by the labeled public, private, and protected

sections within the class body. The keywords public, private, and protected are called access

specifiers.

A class can have multiple public, protected, or private labeled sections.

 When the access specifier for a base class is public, all public members of the base

 become public members of the derived class, and all protected members of the base

become protected members of the derived class.

 When the base class is inherited by using the private access specifier, all public and

 protected members of the base class become private members of the derived class.

 When the base class is inherited by using the protected access specifier, all public and

 protected members of the base class become protected members of the derived class.

Ex:

#include <iostream>

using namespace std;

class base {

protected:

int i, j; // private to base, but accessible by derived

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {

int k;

public:

// derived may access base's i and j

void setk() { k=i*j; }

void showk() { cout << k << "\n"; }

};

int main()

{

derived ob;

ob.set(2, 3); // OK, known to derived

ob.show(); // OK, known to derived

ob.setk();

ob.showk();

return 0;

}

In this example, because base is inherited by derived as public and because i and

j are declared as protected, derived's function setk() may access them. If i and j had

been declared as private by base, then derived would not have access to them, and the

program would not compile.

7.a)What is template? Explain template function and template class with example.
Using templates, it is possible to create generic functions and classes. In a generic function or class,

the type of data upon which the function or class operates is specified as a parameter.

The general form of a template function definition is shown here:

template <class Ttype> ret-type func-name(parameter list)

{

// body of function

}

Here, Ttype is a placeholder name for a data type used by the function. This name

may be used within the function definition. However, it is only a placeholder that the

compiler will automatically replace with an actual data type when it creates a specific

version of the function.

Example:

#include <iostream>

using namespace std;

// This is a function template.

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

int main()

{

int i=10, j=20;

double x=10.1, y=23.3;

char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << '\n';

cout << "Original x, y: " << x << ' ' << y << '\n';

cout << "Original a, b: " << a << ' ' << b << '\n';

swapargs(i, j); // swap integers

swapargs(x, y); // swap floats

swapargs(a, b); // swap chars

cout << "Swapped i, j: " << i << ' ' << j << '\n';

cout << "Swapped x, y: " << x << ' ' << y << '\n';

cout << "Swapped a, b: " << a << ' ' << b << '\n';

return 0;

}

In addition to generic functions, you can also define a generic class. When you do this,

you create a class that defines all the algorithms used by that class; however, the actual

type of the data being manipulated will be specified as a parameter when objects of

that class are created.

/* This example uses two generic data types in a

class definition.

*/

#include <iostream>

using namespace std;

template <class Type1, class Type2> class myclass

{

Type1 i;

Type2 j;

public:

myclass(Type1 a, Type2 b) { i = a; j = b; }

void show() { cout << i << ' ' << j << '\n'; }

};

int main()

{

myclass<int, double> ob1(10, 0.23);

myclass<char, char *> ob2('X', "Templates add power.");

C++

ob1.show(); // show int, double

ob2.show(); // show char, char *

return 0;

}

This program produces the following output:

10 0.23

X Templates add power.

b)Create a class stack using template. Use this class to create a stack with integer and double

elements.
#include <iostream>

using namespace std;

const int SIZE = 10;

// Create a generic stack class

template <class StackType> class stack {

StackType stck[SIZE]; // holds the stack

int tos; // index of top-of-stack

public:

stack() { tos = 0; } // initialize stack

void push(StackType ob); // push object on stack

StackType pop(); // pop object from stack

};

// Push an object.

template <class StackType> void stack<StackType>::push(StackType ob)

{

if(tos==SIZE) {

cout << "Stack is full.\n";

return;

}

stck[tos] = ob;

tos++;

}

// Pop an object.

template <class StackType> StackType stack<StackType>::pop()

{

if(tos==0) {

cout << "Stack is empty.\n";

return 0; // return null on empty stack

}

tos--;

return stck[tos];

}

int main()

{

// Demonstrate character stacks.

stack<char> s1, s2; // create two character stacks

int i;

s1.push('a');

s2.push('x');

s1.push('b');

s2.push('y');

s1.push('c');

s2.push('z');

for(i=0; i<3; i++) cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++) cout << "Pop s2: " << s2.pop() << "\n";

// demonstrate double stacks

stack<double> ds1, ds2; // create two double stacks

ds1.push(1.1);

ds2.push(2.2);

ds1.push(3.3);

ds2.push(4.4);

ds1.push(5.5);

ds2.push(6.6);

for(i=0; i<3; i++) cout << "Pop ds1: " << ds1.pop() << "\n";

for(i=0; i<3; i++) cout << "Pop ds2: " << ds2.pop() << "\n";

return 0;

}

8.a)What is Exception? Explain the use of try, catch and throw with example.

 Exception is run-time errors in program. Using exception handling,

your program can automatically invoke an error-handling routine when an error

occurs.

Exception Handling Fundamentals

C++ exception handling is built upon three keywords: try, catch, and throw. In the

most general terms, program statements that you want to monitor for exceptions

are contained in a try block. If an exception (i.e., an error) occurs within the try block,

it is thrown (using throw). The exception is caught, using catch, and processed. The

following discussion elaborates upon this general description.

Code that you want to monitor for exceptions must have been executed from

within a try block. (Functions called from within a try block may also throw an

exception.) Exceptions that can be thrown by the monitored code are caught by a

catch statement, which immediately follows the try statement in which the exception

was thrown. The general form of try and catch are shown here.

try {

// try block

}

catch (type1 arg) {

// catch block

}

catch (type2 arg) {

// catch block

}

catch (type3 arg) {

// catch block

}...

catch (typeN arg) {

// catch block

}

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

C++

return 0;

}

This program displays the following output:

Start

Inside try block

Caught an exception -- value is: 100

End

b)Write a program for the exception division by zero.
#include <iostream>

using namespace std;

void divide(double a, double b);

int main()

{

double i, j;

do {

cout << "Enter numerator (0 to stop): ";

cin >> i;

cout << "Enter denominator: ";

cin >> j;

divide(i, j);

} while(i != 0);

return 0;

}

void divide(double a, double b)

{

try {

if(!b) throw b; // check for divide-by-zero

cout << "Result: " << a/b << endl;

}

catch (double b) {

cout << "Can't divide by zero.\n";

}

}

