

USN

Internal Test II – April 2018

Sub: Object Oriented Programming Using C++
Sub

Code:
16MCA22 Branch: MCA

Date: 16/04/18 Duration: 90 min’s
Max

Marks:
50

Sem /
Sec:

A OBE

Answer any FIVE FULL Questions from each part.
MARK

S

CO RBT

Part I-1
(a)

Explain the overloading of new & delete operator.
[10] CO2 L2

2 (a) Explain the order of constructor and destructor called in multi level inheritance with

example.

[5] CO2 L2

(b) Explain the concept of pointer to an object with an example. [5] CO2 L1

Part II-

3 (a)

Discuss how to overload an operator using friend and write a program to overload ++

operator using friend.

[6] CO2 L2

 (b) Explain overloading of special operator [] . [4] CO2 L2

4 (a) Explain the dynamic memory allocation operator in C++. Explain proper syntax and

example.

[6] CO2 L2

 (b) Write a program to dynamically allocate memory for object (using constructor). [4] CO2 L2

Part III-

5(a)
Which are the different access specifiers? Explain the effect of inheritance when

deriving by different access specifiers with appropriate examples.

[10] CO2 L2

6(a) Define a STUDENT class with USN, Name, and Marks in 3 tests of a subject. Declare
an array of 10 STUDENT objects. Using appropriate functions, find the average of

the two better marks for each student. Print the USN, Name and the average marks of

all the students.

[10] CO2 L2

Part IV-7(a) Explain the usage of reference parameters with an example of swapping two numbers. [5] CO2 L2

(b) Write a program to find the difference of two numbers using default arguments. [5] CO2 L2

8(a) Create a class called complex which has two data members real part, imaginary part.

Implement a friend function for overloading ‘+’ operator which can compute the sum
of two complex numbers and the function returns the complex object.

[10] CO2 L3

Part V-9(a) Create a base class with two protected data members i and j and two public methods

setij() and showij() to set the values of I and j and display the values of i and j

respectively. Create a derived class which inherits base class as protected. Show how
derived class object sets the values of i and j and display their values.

[6] CO2 L3

 (b) What is the need for a virtual base class? Show how a virtual base class eliminates

ambiguity.

[4] CO2 L2

10 Create a class called MATRIX using two-dimensional array of integers.
Implement the following operations by overloading the operator = = which checks

the compatibility of two matrices to be subtracted. Overload the operator ‘-‘for

matrix subtraction as m3 = m1-m2 when (m1= =m2).

[10] CO2 L3

1.a) Explain the overloading of new & delete operator.

It is possible to overload new and delete.

.
The skeletons for the functions that overload new and delete are shown here:

// Allocate an object.

void *operator new(size_t size)
{

/* Perform allocation. Throw bad_alloc on failure.

Constructor called automatically. */
return pointer_to_memory;

}

// Delete an object.
void operator delete(void *p)

{

/* Free memory pointed to by p.

Destructor called automatically. */
}

The type size_t is a defined type capable of containing the largest single piece

of memory that can be allocated. The overloaded new function must return a pointer to the memory
that it allocates, orthrow a bad_alloc exception if an allocation error occurs.

The delete function receives a pointer to the region of memory to be freed. It
then releases the previously allocated memory back to the system. When an object

is deleted, its destructor is automatically called.

To overload the new and delete operators for a class, simply make the overloaded
operator functions class members.

For example, here the new and delete operators are overloaded for the loc class:

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;
class loc {

int longitude, latitude;

public:
loc() {}

loc(int lg, int lt) {

longitude = lg;
latitude = lt;

}

void show() {

cout << longitude << " ";
cout << latitude << "\n";

}

void *operator new(size_t size);
void operator delete(void *p);

};

// new overloaded relative to loc.
void *loc::operator new(size_t size)

{

void *p;

Output from this program is shown here.
In overloaded new.

In overloaded new.

10 20

-10 -20
In overloaded delete.

In overloaded delete.

When new and delete are for a specific class, the use of these operators on any
other type of data causes the original new or delete to be employed. The overloaded

operators are only applied to the types for which they are defined. This means that if

you add this line to the main(), the default new will be executed:
int *f = new float; // uses default new

You can overload new and delete globally by overloading these operators outside

of any class declaration.
To see an example of overloading new and delete globally, examine this program:

#include <iostream>

#include <cstdlib>

#include <new>
using namespace std;

class loc {

int longitude, latitude;
public:

loc() {}

loc(int lg, int lt) {
longitude = lg;

latitude = lt;

}

void show() {
cout << longitude << " ";

cout << latitude << "\n";

}
};

// Global new

void *operator new(size_t size)

{
void *p;

p = malloc(size);

if(!p) {
bad_alloc ba;

throw ba;

}
return p;

}

// Global delete

void operator delete(void *p)
{

free(p);

}
int main()

{

loc *p1, *p2;
float *f;

try {

p1 = new loc (10, 20);

} catch (bad_alloc xa) {
cout << "Allocation error for p1.\n";

return 1;;

}

try {
p2 = new loc (-10, -20);

} catch (bad_alloc xa) {

cout << "Allocation error for p2.\n";

return 1;
}

try {

f = new float; // uses overloaded new, too
} catch (bad_alloc xa) {

cout << "Allocation error for f.\n";

return 1;;
}

*f = 10.10F;

cout << *f << "\n";

p1->show();
p2->show();

delete p1;

delete p2;
delete f;

return 0;

}
Overloading new and delete for Arrays

To allocate and free arrays,you must use these forms of new and delete.

// Allocate an array of objects.

void *operator new[](size_t size)
{

/* Perform allocation. Throw bad_alloc on failure.

Constructor for each element called automatically. */
return pointer_to_memory;

}

// Delete an array of objects.

void operator delete[](void *p)
{

/* Free memory pointed to by p.

Destructor for each element called automatically.
*/

}

Overloading the nothrow Version of new and delete

You can also create overloaded nothrow versions of new and delete.

// Nothrow version of new.

void *operator new(size_t size, const nothrow_t &n)
{

// Perform allocation.

if(success) return pointer_to_memory;
else return 0;

}

// Nothrow version of new for arrays. void *operator new[](size_t size, const nothrow_t &n)
{

// Perform allocation.

if(success) return pointer_to_memory;

else return 0;
}

void operator delete(void *p, const nothrow_t &n)

{

// free memory
}

void operator delete[](void *p, const nothrow_t &n)

{

// free memory
}

++

 2a) Explain the order of constructor and destructor called in multi level inheritance with

example
It is possible for a base class, a derived class, or both to contain constructors and/or

destructors .In case of multi level inheritance,the constructors are called in the order of derivation and

destructors are called in reverse order.
EX:

#include <iostream>

using namespace std;

class base {

public:

base() { cout << "Constructing base\n"; }

~base() { cout << "Destructing base\n"; }

};

class derived1 : public base {

public:

derived1() { cout << "Constructing derived1\n"; }

~derived1() { cout << "Destructing derived1\n"; }

};

class derived2: public derived1 {

public:

derived2() { cout << "Constructing derived2\n"; }

~derived2() { cout << "Destructing derived2\n"; }

};

int main()

{

derived2 ob;

// construct and destruct ob
return 0;

}

 The above program yields the following output

Constructing base

Constructing derived1

Constructing derived2

Destructing derived2

Destructing derived1

Destructing base

Q2 b: Explain the concept of pointer to an object with an example.

Ans:

 3a)Discuss how to overload an operator using friend and write a program to overload ++

operator using friend.
 If we want to use a friend function to overload the increment or decrement operators,

we must pass the operand as a reference parameter. This is because friend functions

 do not have this pointers. If we overload these operators by using a friend, then the

 operand is passed by value as a parameter. This means that a friend operator function
 has no way to modify the operand. Since the friend operator function is not passed a this pointer to

the operand, but rather a copy of the operand, no changes made to

 that parameter affect the operand that generated the call. But we can do by specifying the parameter

to the friend operator function as a reference
 parameter. This causes any changes made to the parameter inside the function to affect

 the operand that generated the call.

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

loc operator=(loc op2);

friend loc operator++(loc &op);

friend loc operator--(loc &op);

};

// Overload assignment for loc.

loc loc::operator=(loc op2)

{

longitude = op2.longitude;

latitude = op2.latitude;

return *this; // i.e., return object that generated call

}

// Now a friend; use a reference parameter.

loc operator++(loc &op)

{
op.longitude++;

op.latitude++;

return op;

}

// Make op-- a friend; use reference.

loc operator--(loc &op)

{

op.longitude--;

op.latitude--;

int main()

{

loc ob1(10, 20), ob2;

ob1.show();

++ob1;

ob1.show(); // displays 11 21

ob2 = ++ob1;

ob2.show(); // displays 12 22

--ob2;

ob2.show(); // displays 11 21

return 0;

}

3.b) Explain overloading of special operator [] .

Ans: In C++, the [] is considered a binary operator when you are overloading it. Therefore,

the general form of a member operator[]() function is as shown here:

type class-name::operator[](int i)
{

// . . .

} Given an object called O, the expression
O[3]

translates into this call to the operator[]() function:

O.operator[](3)

Example:

 #include <iostream>
using namespace std;

class atype {

int a[3];
public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;
a[2] = k;

}

int &operator[](int i) { return a[i]; }
};

int main()

{
atype ob(1, 2, 3);

cout << ob[1]; // displays 2

cout << " ";

ob[1] = 25; // [] on left of =
cout << ob[1]; // now displays 25

return 0;

}

Q 4. a) Explain the dynamic memory allocation operator in C++. Explain proper syntax and

example.

Dynamic memory allocation operators: new and delete.

New: To allocate the memory.

Syntax:

Ptr_var = new vartype;

e.g: ptr = new int;

Ptr_var = new vartype(initial_value);

The type of initial value should be same as the vartype;

e.g: ptr = new int(100);

Delete: To free the memory.

delete ptr_var;

If there is insufficient memory then the exception bad_alloc will be raised. This exception is defined

in the header <new>. It is available in standard C++.

Advantages of new and delete:

new and delete operators are like malloc() and free() in C Language. But they have more advantages.

1. new automatically allocates enough memory to hold the object.

 (No need to use sizeof operator).

2. new automatically returns the pointer to the specified type.

 It is not needed to typecast it explicitly.

Allocating Arrays:

ptrvar = new arrtype[size];

Delete [] ptrvar;

*** The initial values can’t be given during the array allocation.

Q 4. b) Write a program to dynamically allocate memory for object (using constructor).

 Ans:

#include <iostream>
#include <new>

#include <cstring>

using namespace std;

class balance {
double cur_bal;

char name[80];

public:
balance(double n, char *s) {

cur_bal = n;

strcpy(name, s);
}

~balance() {

cout << "Destructing ";

cout << name << "\n";
}

void get_bal(double &n, char *s) {
n = cur_bal;

strcpy(s, name);

}

};
int main()

{

balance *p;
char s[80];

double n;

// this version uses an initializer
try {

p = new balance (12387.87, "Ralph Wilson");

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";
return 1;

}

p->get_bal(n, s);
cout << s << "'s balance is: " << n;

cout << "\n";

delete p;
return 0;

}

Q 5 a.Which are the different access specifiers? Explain the effect of inheritance when deriving

by different access specifiers with appropriate examples.

Ans : Data hiding is one of the important features of Object Oriented Programming which allows

preventing the functions of a program to access directly the internal representation of a class type. The

access restriction to the class members is specified by the labeled public, private, and protected

sections within the class body. The keywords public, private, and protected are called access

specifiers.

A class can have multiple public, protected, or private labeled sections.

 When the access specifier for a base class is public, all public members of the base
 become public members of the derived class, and all protected members of the base

become protected members of the derived class.

 When the base class is inherited by using the private access specifier, all public and

 protected members of the base class become private members of the derived class.

 When the base class is inherited by using the protected access specifier, all public and

 protected members of the base class become protected members of the derived class.

Ex:

#include <iostream>

using namespace std;

class base {

protected:

int i, j; // private to base, but accessible by derived

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {

int k;

public:

// derived may access base's i and j

void setk() { k=i*j; }

void showk() { cout << k << "\n"; }

};

int main()

{

derived ob;

ob.set(2, 3); // OK, known to derived

ob.show(); // OK, known to derived

ob.setk();

ob.showk();

return 0;

}

In this example, because base is inherited by derived as public and because i and

j are declared as protected, derived's function setk() may access them. If i and j had

been declared as private by base, then derived would not have access to them, and the

program would not compile.

Q 6 a: Define a STUDENT class with USN, Name, and Marks in 3 tests of a subject. Declare an

array of 10 STUDENT objects. Using appropriate functions, find the average of the two better

marks for each student. Print the USN, Name and the average marks of all the students.

Ans: #include <iostream>

using namespace std;

// Declare a class with appropriate member functions and member variables as in the problem

statement

class Student

{

 char usn[11];

 char name[15];

 int m1,m2,m3;

 float avg;

 public :

 void readstudent();

 void calcavg();

 void display();

};

//Function to read the student details from the user

void Student :: readstudent()

{

 cout<<"Enter the usn\n";

 cin>>usn;

 cout<<"Enter the name\n";

 cin>>name;

 cout<<"enter the marks of 3 subjects\n";

 cin>>m1>>m2>>m3;

}

// Function to calculate better of two better marks and to find the average of them

void Student::calcavg()

{

 float small;

 small = ((m1<=m2)?((m1<=m3)?m1:m3):((m2<=m3)?m2:m3));

 avg = (float)((m1+m2+m3) - small)/2;

}

// Function to display the student details

void Student :: display()

{

 cout<<usn<<"\t"<<name<<"\t"<<avg<<endl;

}

int main()

{

 Student st[10];

 int i,n;

 cout<<"Enter the number of students\n";

 cin>>n;

 for(i=0;i<n;i++)

 {

 st[i].readstudent();

 }

 for(i=0;i<n;i++)

 {

 st[i].calcavg();

 }

 cout<<"USN \t Student Name \t Average \n";

 for(i=0;i<n;i++)

 {

 st[i].display();

 }

 return 0;

}

Q 7a: Explain the usage of reference parameters with an example of swapping two numbers.

 Ans: #include<iostream>

using namespace std;

template <class X> void swapargs(X &a, x &b)

{

 X temp;

 temp=a;

 a=b;

 b=temp;

}

int main()

{

 int i=10,j=20;

 double x=10.5,y=90.8;

 cout<<”Original i,j:”<<i<<' '<<j<<'\n';

 cout<<”Original x,y:”<<x<<' '<<y<<'\n';

 swapargs(i,j);

 swapargs(x,y);

 cout<<”Swapped i,j:”<<i<<' '<<j<<'\n';

 cout<<”Swapped x,y:”<<x<<' '<<y<<'\n';

 return 0;

}

Q 7 b: Write a program to find the difference of two numbers using default arguments.

Ans: #include <iostream>
using namespace std;

 void diff(int a,int b= 6);
 int main()

 {

 int a,b;

 cout<<"enter any two numbers\n";
 cin>>a>>b;

 diff(a) ; // sum of default values
 diff(a,b);

 diff(b);

 return 0;

 }
 void diff (int a1, int a2)

 {

 int temp;
 temp = a1 - a2;

 cout<<"a="<<a1<<endl;

 cout<<"b="<<a2<<endl;
 cout<<"Difference="<<temp<<endl;

 }

Q 8 a:Create a class called complex which has two data members real part, imaginary part.

Implement a friend function for overloading ‘+’ operator which can compute the sum of two

complex numbers and the function returns the complex object.

Ans : #include<iostream>

using namespace std;

class complex

{

 int real;

 int imag;
public:

 void read()

 {

 cout<<"enter real and imaginary";
 cin>>real>>imag;

 }

 void display()
 {

 cout<<real<<"+"<<imag<<"i"<<endl;

 }
 friend complex operator +(complex, complex);

 };

complex operator +(complex a1,complex a2)

 {

 complex temp1;
 temp1.real=a1.real+a2.real;

 temp1.imag=a1.imag+a2.imag;

 return temp1;
 }

int main()

{

 int a;

 complex s1,s2,s3;
 s1.read();

 s2.read();

 cout<<"First Complex number";

 s1.display();
 cout<<"Second Complex number";

 s2.display();

 s3=s1+s2;
 cout<<"addition of 2 complex number\n"<<endl;

 s3.display();

 return 0;
}

Q 9 a: Create a base class with two protected data members i and j and two public methods

setij() and showij() to set the values of I and j and display the values of i and j respectively.

Create a derived class which inherits base class as protected. Show how derived class object

sets the values of i and j and display their values.

Ans: It is possible to inherit a base class as protected. When this is done, all public and protected
members of the base class become protected members of the derived class.

For example,

#include <iostream>

using namespace std;
class base {

protected:

int i, j; // private to base, but accessible by derived
public:

void setij(int a, int b) { i=a; j=b; }

void showij() { cout << i << " " << j << "\n"; }

};
// Inherit base as protected.

class derived : protected base{

int k;
public:

// derived may access base's i and j and setij().

void setk() { setij(10, 12); k = i*j; }
// may access showij() here

void showall() { cout << k << " "; showij(); }

};

int main()
{

derived ob;

// ob.setij(2, 3); // illegal, setij() is
// protected member of derived

ob.setk(); // OK, public member of derived

ob.showall(); // OK, public member of derived
// ob.showij(); // illegal, showij() is protected

// member of derived

return 0;

}
As you can see by reading the comments, even though setij() and showij() are public members of

base, they become protected members of derived when it is inherited using the protected access

specifier. This means that they will not be accessible inside main().

Q 9 b: What is the need for a virtual base class? Show how a virtual base class eliminates

ambiguity.

Ans: When two or more objects are derived from a common base class, you can prevent multiple
copies of the base class from being present in an object derived from those objects by declaring the

base class as virtual when it is inherited. You accomplish this by preceding the base class' name with

the keyword virtual when it is inherited. For example, here is another version of the example program
in which derived3 contains only one copy of base:

// This program uses virtual base classes.

#include <iostream>
using namespace std;

class base {

public:

int i;
};

// derived1 inherits base as virtual.

class derived1 : virtual public base {
public:

int j;

};
// derived2 inherits base as virtual.

class derived2 : virtual public base {

public:

int k;
};

/* derived3 inherits both derived1 and derived2.

This time, there is only one copy of base class. */
class derived3 : public derived1, public derived2 {

public:

int sum;

};
int main()

{

derived3 ob;
ob.i = 10; // now unambiguous

ob.j = 20;

ob.k = 30;
// unambiguous

ob.sum = ob.i + ob.j + ob.k;

// unambiguous

cout << ob.i << " ";
cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;
}

As you can see, the keyword virtual precedes the rest of the inherited class' specification. Now that

both derived1 and derived2 have inherited base as virtual, any multiple inheritance involving them
will cause only one copy of base to be present. Therefore, in derived3, there is only one copy of base

and ob.i = 10 is perfectly valid and unambiguous. One further point to keep in mind: Even though

both derived1 and derived2 specify base as virtual, base is still present in objects of either type. For

example, the following sequence is perfectly valid:
// define a class of type derived1

derived1 myclass;

myclass.i = 88;

The only difference between a normal base class and a virtual one is what occurs when an object
inherits the base more than once. If virtual base classes are used, then only one base class is present

in the object. Otherwise, multiple copies will be found.

Q 10: Create a class called MATRIX using two-dimensional array of integers. Implement

the following operations by overloading the operator = = which checks the compatibility of

two matrices to be subtracted. Overload the operator ‘-‘for matrix subtraction as m3 = m1-m2

when (m1= =m2).

Ans: #include<iostream>

#define Max 20
using namespace std;

class Matrix

{

 public:
 int a[Max][Max];

 int r,c;

 void getorder();
 void getdata();

 Matrix operator -(Matrix);

 friend ostream& operator <<(ostream &, Matrix);
 int operator==(Matrix);

};

void Matrix::getorder()
{

 cout<<"enter the number of rows\n";

 cin>>r;
 cout<<"enter the number of columns\n";

 cin>>c;

}

void Matrix::getdata()
{

 int i,j;

 for(i=0;i<r;i++)
 {

 for(j=0;j<c;j++)

 {
 cin>>a[i][j];

 }

 }

}

Matrix Matrix::operator -(Matrix m2)

{
 Matrix m4;

 int i,j;

 for(i=0;i<r;i++)
 {

 for(j=0;j<c;j++)

 {

 m4.a[i][j] = a[i][j] - m2.a[i][j];
 }

 }

 m4.r = r;

 m4.c = c;
 return m4;

}

ostream & operator <<(ostream & out, Matrix m)

{
 int i,j;

 for(i=0;i<m.r;i++)

 {
 for(j=0;j<m.c;j++)

 {

 out<<m.a[i][j]<<"\t";
 }

 out<<endl;

 }

 return out;
}

int Matrix::operator==(Matrix m2)

{
 if((r==m2.r) && (c==m2.c))

 return 1;

 else
 return 0;

}

int main()

{

 Matrix m1,m2,m4;
 cout<<"enter the order of the first matrix\n";

 m1.getorder();

 cout<<"enter the order of the second matrix\n";

 m2.getorder();

 if(m1 == m2)

 {

 cout<<"enter the elements of the first matrix\n";
 m1.getdata();

 cout<<"enter the elements of the second matrix\n";

 m2.getdata();

 m4 = m1 - m2;
 cout<<"Difference of matrices is \n";

 cout<<m4<<endl;

 } else {

 cout<<"Order of the matrices is not same";
 }

 return 0;

}

